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Abstract

Increased application of multivariate data in many scientific areas has considerably
raised the complexity of analysis and interpretation. Although quite a few approaches
have been suggested to address this issue, there is still a gap between the most efficient
proposed methods and available software. muvis is an R package (core team (2017)) which
is a toolkit for analyzing multivariate datasets. Several tools are implemented for common
analyses of multivariate datasets, including preprocessing, dimensionality reduction, sta-
tistical analysis, Probabilistic Graphical Modeling, hypothesis testing, and visualization.
Furthermore, we have implemented two novel methods–Variable-wise Kullback-Leibler
Divergence (VKL) and Violating Variable-wise Kullback-Leibler Divergence (VVKL)–in mu-
vis, which are proposed to find the features with most different probability distributions
between two groups of samples. The main aim of the package is to provide a wide range of
users with different levels of expertise in R with a set of tools for comprehensive analysis
of multivariate datasets. We exploited the NHANES dataset to declare the functionality
of muvis in practice.

Keywords: Probabilistic Graphical Models, Variable-wise Kullback-Leibler Divergence, Mul-
tivariate Analysis, Multivariate Visualization, Statistical Modeling.
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1. Introduction

The recent advent of huge data in a wide range of scientific fields such as sociology, envi-
ronmental research, economics, and biomedical research has raised demands for methods and
tools to interpret and analyze high-dimensional data, where each dataset contains a large
number of measurements or variables. Quite a few approaches have been put forward to
analyze multivariate datasets (Timm (2004), Coghlan (2014), Esbensen, Guyot, Westad, and
Houmoller (2002)). There are a number of widely-used approaches for analysis of multivariate
data, including hypothesis testing to assess the significance of the association between two
variables, fitting linear or non-linear models to associate one feature to another feature or a
set of other features in the dataset, and using correlation analysis to capture how variables
interact with or influence each other (Cohen, West, and Aiken (2014)).

The usual practice for analyzing multivariate data includes several steps: (i) Pre-processing
and quality assurance, including identification and filtering of outliers and low-quality sam-
ples and missing data imputation. (ii) Multivariate analysis with possibly many different
approaches, including dimensionality reduction, hypothesis testing, predictive models, corre-
lation analysis, graphical modeling, etc. (iii) Visualization and interpretation of the results,
including uni-, bi- and multivariate plots, interactive and dynamic graphical representations,
network visualization of interactions, etc. Several R packages have been developed so far for
carrying out any of the above tasks (Tsagris (2016), Everitt and Hothorn (2011), Lê, Josse,
and Husson (2008)). Since there is no single package providing all of these functionalities,
conducting the whole analysis requires using many different packages and re-adaptation of
data among them, which is a cumbersome challenge for many people of different scientific
backgrounds who need to analyze their multivariate data.

Here we introduce muvis as a comprehensive toolkit for multivariate analysis and visualiza-
tion providing an end-to-end analysis pipeline. Furthermore, we highlight the necessity of
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the paradigm shift from regular correlation analysis to Probabilistic Graphical Modeling in
multivariate settings. Additionally, we introduce two novel distribution-based methods based
on Kullback-Leibler Divergence analogous to hypothesis testing (we use the term KL-based
methods to refer to these two methods). These methods will be introduced in details in the
following sections.

This paper is organized as follows: Section 2 gives a brief theoretical background of Graphical
Models (GMs) and the novel KL-based methods. In section 3, the implementation of the
package functions is described in details. Section 4 contains the results of the package, applied
on a real multivariate dataset. Our conclusions are drawn in the final section.

2. Theoretical Background

2.1. Graphical Models

One of the key challenges in the analysis of a large dataset, containing many variables (i.e.,
measurements) and observations (i.e., samples), is to capture the associations among variables
and represent them in a simple manner. Consider a dataset of n variables measured in
m observations. One can investigate

(
n
2

)
pairwise associations among variables, which is

computationally intensive and difficult to interpret. Therefore, the objective is to prune the
complete graph to one containing a subset of key associations rather than all possible links.
To this end, one of the most acclaimed approaches is to use Probabilistic Graphical Models
(PGMs), in which partial (conditional) dependencies among variables are represented as a
sparse graph.

Graphical Models (GMs) are renowned for modeling relations among variables in a compact
manner. Based on principles in probability and graph theory, they supply effective tools to
deal with complexity as well as uncertainty underlying the structure of associations among
variables. More precisely, given a multivariate random variable, PGMs are aimed to describe
the probability distribution of the variable which is equivalent to the structure of the par-
tial dependencies among variables (Lauritzen (1996), Koller, Friedman, Getoor, and Taskar
(2007)). The most distinctive feature of GMs is partial independence structure in the joint
distribution of the variables which is often sparse even in complex phenomena. This leads
to a sparse representation of the dependency structure. The theory behind GMs is described
in more details in the following section. In parallel with theoretical developments, several
software packages are developed for analysis of data using GMs. Particularly, R community
has made a significant contribution in this regard (Højsgaard, Edwards, and Lauritzen (2012)).

• Markov Networks (Markov Random Fields): A Markov Random Field is a
joint probability distribution of a number of Gaussian random variables X1, X2, . . . , Xn

represented as an undirected graph G. Each node of G represents a variable, and each
edge indicates a non-zero partial correlation between a pair of variables (Rue (2005)).
Here, we focus on Gaussian Graphical Models (GGMs). Gaussianity is proposed to be
a reasonable assumption according to its mathematical simplicity and its dominance in
nature (Véron and Rohrbasser (2003); Uhler (2017)).

– Conditional Dependence: In many statistical analyses, the problem is to find the
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relationships (dependence structure) among a subset of variables given occurrence
of an event. This concept is defined as conditional dependence in statistics. Given
three random variables, Xi, Xj , and Xk, Xi and Xj are independent conditioned
on Xk if and only if

P (Xi;Xj |Xk) = P (Xi|Xk)P (Xj |Xk). (1)

– Precision Matrix: LetX = (X1, X2, . . . , Xn) be an n-dimensional normally-distributed
random vector. Assuming X ∼ Nn(µ,Σ), the density function of X can be shown
as

fµ,Σ(x) = (2π)−n/2(detΣ)−1/2e−
1
2

(x−µ)T Σ−1(x−µ), (2)

were µ is mean and Σ is the covariance matrix of X. We call Σ−1 the concentra-
tion/precision matrix. An interesting property of this formula is that the precision
matrix consists of partial correlations such that Σ−1

ij is equal to the partial correla-
tion of Xi and Xj (Wasserman (2013)). It can be shown that zero partial correla-
tion is equivalent to partial independence. Throughout this paper we will use zero
(non-zero) partial correlation and partial independence (dependence) alternatively.
Therefore, a normal distribution can be represented as a graph G = (V,E) in which
V is the set of vertices (nodes), each node Vi representing a variable Xi, and E is
the set of edges such that for an edge eij exists if and only if Σ−1

ij 6= 0. We call such
graph a GGM. The objective is to estimate the precision matrix. Given m identi-
cally independent distributed observations X(1), X(2), . . . , X(m) from Nn(µ,Σ) the
log-likelihood function can be written as

l(µ,Σ) = C(−m
2
log det(Σ)− 1

2
Σm
i=1(X(i) − µ)TΣ−1(X(i) − µ))

∝ m

2
log det(Σ)− 1

2
tr(Σ−1(Σm

i=1(X(i) − µ)(X(i) − µ)T ) (3)

= −m
2
log det(Σ)− m

2
tr(SΣ−1)− m

2
(X̄ − µ)TΣ−1(X̄ − µ),

where C is a positive constant. In addition, given µ = X̄, the term −n
2 (X̄ −

µ)TΣ−1(X̄ − µ) is constant. Thus, in order to solve Maximum Likelihood (ML)
estimation, we have to maximize the term −log det(Σ) − tr(SΣ−1) on all possi-
ble covariance matrices Σ or if we assign K = Σ−1 then we should maximize
log det(K) + tr(SΣ−1) for K in the set of all possible precision matrices, where
S = Σn

i=1(X(i) − µ)(X(i) − µ)T = Σ̂ (Lauritzen (1996)). The aim now is to con-
struct a GM, G.

– Model Selection: So as to construct the GM, we must select the best model among
all possible models, i.e., for a graph with v nodes we have to select the most likely
graph fitting the model among all graphs with v nodes and possible

(
v
2

)
edges.

∗ Stepwise Methods: A collection of methods proposed for model selection are
based on the stepwise approach. In this method, we start from a graph with no
edge (or all possible edges) and follow sufficient forward (or backward) steps
to construct the graph. We introduce two stepwise methods implemented in
our package, below:
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· Akaike Information Criterion (AIC): Akaike Information Criterion is based
on minimizing negative of log-likelihood, penalized by model complexity
(Burnham, Anderson, and Huyvaert (2010)). The AIC of the model, with
parameter k, is

AIC(k) = −2l + k|E|, (4)

in which |E|, number of edges, stands for model complexity (or degree of
freedom). In AIC, at each step of forward (or backward) stepwise algo-
rithm, we add (or remove) the edge which minimizes the AIC (or decrease
it over some threshold).

· Bayesian Information Criterion (BIC): Bayesian Information Criterion is
very similar to AIC except for k which has to be equal to log(m) when we
have m observations of each variable (Claeskens and Hjort (2008)).

∗ Thresholding: A very simple method for constructing GGMs is to threshold
partial correlations. In this method, the edge between two nodes with partial
correlation above a threshold will be added to, otherwise will be eliminated
from the graph. However, one should estimate the whole precision matrix prior
to use this method and the estimation may not be feasible due to non-positive-
definiteness of the covariance matrix.

∗ Significance Tests: According to Gaussianity, one can test if a partial cor-
relation is zero. To this end, consider the estimation of ρi,j as the partial
correlation between variables i and j, it can be shown that one has

ρ̂i,j = Sij − Si,V−{i,j}S−1
V−{i,j},V−{i,j}SV−{i,j},j . (5)

Now consider Fisher’s z-transform as

ẑi,j =
1

2
log
(1 + ρi,j

1− ρi,j
)
. (6)

The test statistic Tm =
√
m− p+ 2− 3|ẑi,j | can be used with a rejection of

Rn = (−F−1(1− α/2), F−1(1− α/2)), with F , the cumulative distribution of
standard normal, to a test of power α (Drton and Perlman (2007)).

∗ glasso: glasso proposed to maximize the penalized log-likelihood function,

l − λ|K|1 (7)

were λ is penalizing parameter to determine model sparsity and |K|1 is the
sum of absolute values of off-diagonals of the precision matrix to control the
model complexity. This leads to a convex programming problem which is
straightforward to solve. Additionally, glasso algorithm can be applied well to
high-dimensional settings (Friedman, Hastie, and Tibshirani (2008)).

• Bayesian Networks (Causal Networks): In every multivariate setting, an inter-
esting investigation is to find causal effects among the variables, that is, to find which
variable, measurement, or feature is a cause of another. Although yet there has been no
algorithm proposed to capture the whole causal association set among a set of variables,
there are some algorithms with satisfying efficiency, developed for causal inference (Dr-
ton and Perlman (2007)). The formalism of the problem is as follows:

5



Assume X to be an n-dimensional random variable with density function f . One can
factorize f as

fX(x) =
n∏
i=1

fXi(xi|Pa(Xi)), (8)

where Pa(Xi) ⊆ {X1, X2, . . . , Xn} (Pa stands for Parent). A Bayesian network is a
directed graph like G = (V,E), where V is the vertex set in which each vertex, like
vi, represents a variable, like Xi, and each edge, like eij , in the set edge E stands
for conditional dependence between the two variables, like Xi and Xj , given all other
variables. In G each edge ending at vi is either directed from corresponding vertices
of Pa(Xi) to vi or from vi to vj iff Xi ∈ Pa(Xj). Accordingly, the direction of each
edge implies probabilistic causality, since, given the states of parents, the probability
distribution of child will be determined. It can be shown that this setting leads to
a Directed Acyclic Graph (DAG) representing f due to Markov property (Drton
and Perlman (2007)). Thus, in order to construct a Bayesian network one must first
estimate such a factorization of f . To that end, one approach is to first find conditional
(partial) independence structure of the multivariate model and then find directions
(causal relations) among the structure. In the next section, we introduce a constraint-
based algorithm we implemented in muvis, named FCI.

– Fast Causal Inference Algorithm: FCI is a constraint-based algorithm first pro-
posed in (Kalisch and Martin (2010)). This class of algorithms, aim to find some
constraints given observed data that are necessary if the variables have a specific
causal structure. Afterward, the causal structure will be estimated according to
the set of constraints in hand. FCI is a generalization of PC-algorithm (Kalisch,
Maechler, Colombo, and Kalisch (2010)). PC-algorithm consists of three promi-
nent steps. In the beginning, the undirected skeleton of the graph is estimated.
Then, for each edge like (u, v) which is present in the graph, the algorithm checks
if there is any subset of nodes that can separate the two ends of the edge (u, v),
i.e., if there is any subset like S which u & v are independent|S. This step can be
carried out by checking the constraints mentioned before. In the next step, the
v1 − v2 − v3 substructures (we will call such substructures, v − structures) are
oriented with some rules (Kalisch et al. (2010)). Finally, the algorithms use some
rules to orient further edges avoiding directed cycles (Kalisch et al. (2010)). In
FCI is based upon PC-algorithm assuming the existence of some hidden variables.
The first part of the FCI algorithm is the same as the PC-algorithm. In light of
the existence of hidden variables, excluding edges due to some conditional subset
separations is not sufficient. So the algorithm uses more rules to remove more
edges due to the possibility of the presence of hidden variables. Description of the
details of these algorithms is beyond the scope of this paper (readers can find the
details in Kalisch and Martin (2010) and Kalisch, Hauser, Maathuis, and Mächler
(2018)). There is also a faster version of FCI which is computationally cheaper
and is known as an approximation of FCI, named RFCI.

• Minimal Forest for High-dimensional Modeling: When the number of vari-
ables is too large (hundreds and thousands of variables), simple Graphical Modeling
algorithms may fail both statistically (efficiency) and computationally (performance).
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Correspondingly, proper algorithms should be used in order to address these issues in
high-dimensional settings. In the following, we will introduce an algorithm called mini-
mal forest which is designed for high-dimensional Graphical Modeling.

– The Chow-Liu Algorithm: Chow and Liu proposed an algorithm based on max-
imum weight spanning tree algorithm to find the maximum likelihood tree for
multinomial discrete distributions. The algorithm is fast enough to be applied to
high-dimensional data. The formulation comes in the following.

Given an m× n dataset with m observations of n discrete variables, we aim to fit
a maximum likelihood tree to the variables. Suppose that V is the set of variables
(nodes) and E is the set of associations (edges). Chow and Liu (1968) showed that
the probability of observing V = v can be written as

P (v) =

∏
(Vi,Vj)∈E P (Vi = vi, Vj = vj)∏

i∈V P (Vi = vi)di−1
(9)

were P is the probability distribution function and di is the degree of the node vi
in the tree. It can be shown that the maximum log-likelihood is the summation of
mutual information between each pair of variables. Where the mutual information
between Vi and Vj is defined as

Ii,j =
∑
vi,vj

∑
I(Vi = vi, Vj = vj)log

∑
I(Vi = vi, Vj = vj)∑

I(Vi = vi)
∑
I(Vj = vj)

, (10)

where I is the indicator function. Thus, if we use Ii,j as the weight of the edge
(Vi, Vj), applying the maximum spanning tree algorithm on the graph will lead
to the maximum likelihood tree (Chow and Liu (1968)). As mutual information
can be also defined for continuous distributions, this method can be extended
to continuous variables and also mixed distributions of continuous and discrete
variables (Edwards, de Abreu, and Labouriau (2010b)). Finally, so as to construct
the maximum spanning tree from a connected graph, the Kruskal’s algorithm can
be used (Kruskal (1956)).

– AIC/BIC minimal forest: Although extracting maximum-likelihood spanning tree
gives a spare representation of the associations within the set of variable, it will
force the representation to be connected, which may not be true for some settings.
Respectively, extending the tree to a forest will address this problem. Edwards
et al. (2010b) proposed a penalized mutual information measure based on AIC and
BIC. In that paper they introduced IAICi,j = Ii,j−k|E| and IBICi,j = Ii,j− log(m)|E|
as the alternative weights of the edge (Vi, Vj). After filtering out the edges with
negative weights the Kruskal’s algorithm can be employed to select the maximum
spanning tree of the graph (Edwards et al. (2010b)).

2.2. Variable-wise KL-divergence

Kullback-Leibler Divergence: Kullback-Leibler divergence (KL-divergence) is a mea-
sure of dissimilarity of one probability distributions from another distribution (Fig. 1a). Given
DKL(P ||Q) as the KL-divergence of distribution Q with respect to distribution P , DKL(P ||Q)

7



indicates a measure of error, assuming Q when the real distribution is P (Kullback and Leibler
(1951)). KL-divergence for discrete probability distributions P and Q is defined as

DKL(P‖Q) =
∑
i

P (i) log
P (i)

Q(i)
. (11)

Moreover, KL-divergence can be applied to continuous distributions as

DKL(P‖Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx. (12)

It can be proved that KL-divergence is non-negative. One can use KL-divergence in a sym-
metric manner in order to find the distance between two distributions. Thus, Dsym(P,Q) may
be defined as

Dsym(P,Q) = DKL(P‖Q) +DKL(Q‖P ). (13)

• Variable-wise Kullback-Leibler Divergence: The Symmetric KL-divergence
which is defined in the previous section can be used to compute the divergence of two
groups of observations of a single measurement. In other words, if the measurement
can discriminate the two groups efficiently. One can generalize this to a set of variables
(measurements) with two fixed groups of observations (Fig. 1b). With such an approach,
KL-divergence can be respected as a measure of importance along variables, thus, sorting
variables regarding their KL-divergence values orders the list of variables in terms of
importance. We call this approach Variable-wise KL-divergence (VKL).

• Find Violating Variables with VKL: Assuming two measurements (variables) to
have a linear association, one can simplistically fit a line to the pair of variables. Outliers
of a linear regression can be identified regarding their residuals. The observations with
the most absolute values of residuals can be defined as outliers, by setting a cut-off.
Subsequently, looking for differences (in measurements) of such outliers may lead to
some valuable information (Fig. 1c), i.e., these outliers should have some features
which block (violate) the expected linear association. For instance, suppose that we
have a dataset including some laboratory (continuous) measurements and a number of
clinical demographic (discrete) data collected from a population and we want to look if
there are some features that may violate the positive (linear) association of Body Mass
Index (BMI) as a measure of obesity and Diastolic Blood Pressure (DBP). Accordingly,
looking for differences between up-outliers (relative high BMI and low DBP) and low-
outliers (relative low BMI and high DBP) in every other measurement we have will lead
us to the most important features that are potential to violate the expected association.
To this end, we can use VKL-divergence in order to find the most different features of
the two groups of outliers. Such features may be very informative because of the ability
to block the expected linear association. In this specific example, one may be interested
to see which features can block high DBP in relatively obese individuals, and also which
features can cause high DBP in relatively slim individuals (Fig. 1c).

• Significance Levels of KL-divergence: In order to compute the significance level
of KL-divergence, one can permute the members between two groups of observations to
see if the KL value for the variable is significant (size of the two groups should be fixed).
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In this setting, after creating a lot of permuted groupings, the true KL-divergence value
can be compared to the empirical distribution constructed by permuting groups (Fig.
2).

3. Package Implementation

3.1. Preprocessing

The data_preproc function can be used to preprocess raw datasets. The function is de-
signed to address outlier-detection and imputation of missing data. In order to find outliers,
data_preproc uses an anomaly-detection algorithm from Vallis, Hochenbaum, and Kejariwal
(2014) for time series data (Fig. 3). For each variable, it sorts the observations in a decreasing
(or increasing) order and it defines the anomalies detected by the algorithm, as outlier data
(Fig. 4). The function then removes the outliers and behave them as missing observations.
The missing observations are imputed by the mean or the median of the whole set of ob-
servations for the measurement if it is continuous or categorical, respectively. The method
gets a parameter, levels, an integer value indicating the maximum number of levels of a
categorical variable. The method returns the dataset with continuous variables as numeric

and categorical variables as factor data types (see 4.2 for the practical example).

3.2. Test Associations

The function test_pair implements Pearson’s Chi-squared, ANOVA, and correlation tests
for categorical-categorical, categorical-continuous, and continuous-continuous pairs of vari-
ables, respectively. One can easily use test_pair (test_assoc) in order to test any desired
association between two (multiple) variables. Additionally, test_assoc implements multiple
hypothesis tests, using False Discovery Rate correction of Benjamini and Hochberg.

3.3. Plot Associations

The function plot_assoc is implemented to facilitate single- and pairwise-variable visualiza-
tions. For a single continuous or categorical variable, it creates a bar plot and density plot,
respectively. Pairwise-variable visualizations consist of a boxplot of the continuous variable
for different levels of the categorical one, a scatter plot for two continuous variables and a
heatmap illustrating the relation of different levels of two categorical variables. There is also
a logical parameter interactive indicating if the output plot a highcharter object (Kunst
(2017)). It will output a print-friendly plot using R package ggplot2 when the parameter is
set to False (Wickham (2010)).

3.4. Graphical Models

As mentioned in 2.1, GMs are efficient for computation and interpretation of the whole struc-
ture of associations among the variables. However, each set of variables requires a proper
GM. Package muvis implements three types of GMs: (i) ggm implements five different meth-
ods (i.e., AIC-based, BIC-based, partial correlation thresholding, significance testing, and
glasso) for GGM structure learning, based on R packages gRim, glasso, SIN, and gRbase. (ii)
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Figure 1: Variable-wise KL-based methods. Given a multivariate dataset with m samples
and n variables, a) simple (symmetric) KL-divergence (KL) can be used in order to find the
distance between probability distributions of two interesting groups of sample, colored in
green and red, for a single variable; b) Variable-wise KL-divergence (VKL) can be used so as
to calculate KL-divergence between two groups of samples for each variable, by calculating
KL-divergence between the two groups on each variable; c) by fitting a linear model on two
variables of interest, Violating Variable-wise KL-divergence (VVKL), finds the outliers with
most absolute residuals in the linear model, the upper group is colored in red and the lower
one is in green and these two groups of outliers will be then passed to VKL to find the violating
(blocking) variables for the linear association expected on the two variables.
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Figure 2: The significance level of KL-divergence. In order to find the significance level
of a KL-divergence (KL Value 1) of a variable between two groups of samples (Permute 1),
one can permute the samples between groups for k times and compute the KL-divergence
between new couple of groups (Permute 2, Permute 3, . . . , Permute k). Afterward, one
can find the significance level of the KL-value by considering the empirical distribution of
permuted KL-values as it is illustrated in the upper plot.
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Figure 3: Anomaly Detection by Vallis et al. (2014). The points in time-series data
which do not follow the major trend of data are recognized as anomalies. The normal samples
are colored in red and the anomalies are in blue

Figure 4: Outlier Detection Algorithm. After sorting data points in an increasing manner
for the variable of interest, the outliers are detected after applying the anomaly detection
algorithm (blue samples).
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dgm is for constructing Directed (causal) GMs (DGMs) using pcalg package. (iii) min_forest
is designed for High-dimensional Graphical Modeling and is based on its implementation in
the package gRapHD (Edwards, de Abreu, and Labouriau (2010a)). For all of the mentioned
methods, there is a parameter community which indicates if the user wants to apply commu-
nity detection algorithms on the graph to find the modules within the graph. To this end,
we used Louvain method from R package igraph (Csardi (2010); Blondel, Guillaume, Lam-
biotte, and Lefebvre (2008)). There is another parameter plot which is a logical parameter
indicating if the user wants to plot the graph. The R package qgraph is used to implement
this graph visualization (Epskamp, Cramer, Waldorp, Schmittmann, and Borsboom (2012)).

3.5. KL-based Functions

The functions VKL and VVKL implement the KL-methods. The parameter permute indicates
the number of permutations as described in 2.2 and is used to find the significance of the
KL values. We used the function KL.plugin from R package entropy to calculate KL values
(Hausser and Strimmer (2014)). As this function works on discrete data, prior to calculating
KL for continuous variables, we discretize and consider them like discrete data (see 4.7).

4. The NHANES 2005-2006 dataset

The National Health and Nutrition Examination Surveys (NHANES) (The United States
Department of Health and Human Services. Centers for Disease Control and Prevention.
National Center for Health Statistics (2012)) is a program of studies about health and nu-
trition for US residents. We examined the functionality of muvis on NHANES 2005-2006
dataset which contains 7449 variables and 10,348 samples (see https://www.icpsr.umich.

edu/icpsrweb/ICPSR/studies/25504/summary for more details).
Based on the number of missing values, we selected 161 variables including one ID, 74 contin-
uous, and 86 categorical variables (having two to fifteen levels) and 4461 individuals (samples)
aged from 20 to 85 years, including about 1% missing values. See Table 1 for description of
the variables that are mentioned in this article. Complete list of 161 variables is available
in NHANES dataset of the package. The next parts describe the analysis of this dataset using
muvis.

4.1. Loading the package and data

muvis is available at https://github.com/bAIo-lab/muvis. Once the package is installed
and loaded into the R environment, the NHANES dataset can be loaded as a dataframe by a
call to data as in the following.

> library(muvis)

> data("NHANES")

4.2. Preprocessing

We use data_preproc function for preprocessing of NHANES. The detect.outliers option is
used to exclude outliers for each variable. As a first step through interpretation, we plot the
relation between LBXVIE (a variable in the dataset indicating the amount of vitamin E) and
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(a) (b)

Figure 5: Scatter plot of LBXTC (total cholesterol. mg/dL) and LBXVIE (vitamin E. ug/dL)
for NHANES dataset (a) with outliers and (b) without outliers. Each blue point indicates a
sample and the black line shows the regression line fitted on two variables.

LBXTC (the amount of total cholesterol) with and without outliers. The difference has been
shown in Fig. 5.

> nhanes_with_outliers <- data_preproc(NHANES, levels = 15, alpha = 0.5)

> nhanes <- data_preproc(NHANES, levels = 15, detect.outliers = TRUE,

alpha = 0.5)

> plot_assoc(nhanes_with_outliers, vars = c("LBXVIE", "LBXTC"))

> plot_assoc(nhanes, vars = c("LBXVIE", "LBXTC"))

4.3. GGM for continuous data

We construct a GGM for continuous variables using ggm function. In this example, we con-
struct it by intersecting glasso and sin algorithms. The largest connected component of the
estimated graph is visualized by graph_vis function (Fig. 6).

> nhanes$SEQN <- NULL

> nhanes_ggm <- ggm(nhanes, significance = 0.05,

rho = 0.15, community = TRUE, methods = c("glasso", "sin"), plot = F)

> grph_clustrs <- clusters(nhanes_ggm$graph)

> new_ggm <- induced.subgraph(nhanes_ggm$graph,

V(nhanes_ggm$graph)[which(grph_clustrs$membership == which.max(grph_clustrs$csize))])

> ggm_vis <- graph_vis(new_ggm, plot = T,

filetype = "png", filename = "nhanes_ggm")

Investigating each community one can appraise the efficiency of the model: Community 1
are all about body measurements (e.g., BMI, waist circumstance, height, etc.); community 2
explains red blood cell profile; community 3 contains measurements about different types of
white blood cells; community 4 accommodates uric acid, vitamin A, Urea, Creatinine, and
Homocysteine; community 5 includes variables describing body biochemistry profile; commu-
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Figure 6: GGM. The graph is constructed using ggm function with the intersection of the
models estimated by sin and glasso methods. The largest connected component of the graph
is shown. The nodes represent continuous variables in the data and are colored according to
their community.

nity 6 contains some vitamins and chemical compounds (e.g. carotenoids, folate, etc.); and
finally community 7 contains age, blood pressure, lead, and Parathyroid hormone.

4.4. Causal network for continuous data

The causal (directed) network of continuous variables is constructed using dgm function with
parameter dtype = "gaussian". The largest connected component of the estimated graph
is shown in Fig. 7.

> nhanes_dgm <- dgm(nhanes, dtype = "gaussian", alpha = 1e-15)

> grph_clustrs <- clusters(nhanes_dgm$graph)

> new_dgm <- induced.subgraph(nhanes_dgm$graph,

V(nhanes_dgm$graph)[which(grph_clustrs$membership == which.max(grph_clustrs$csize))])

> dgm_vis <- graph_vis(new_dgm, plot = T, directed = T, filename = "nhanes_dgm",

filetype = "png")

4.5. Minimal forest for mixed data

Using min_forest function we estimate the minimal forest with BIC method and detect
communities in the graph. The estimated minimal forest and some of its communities are
illustrated in Fig. 8.

> nhanes_mf <- min_forest(nhanes, stat = "BIC", community = T, plot = F)
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Figure 7: Causal graph. The largest connected component of the graph is shown. Nodes
indicate variables in the dataset and are colored based on their community number. Edges
are directed based on the estimated causal relationship so that each edge is directed from
cause to effect.

> mf_vis <- graph_vis(nhanes_mf$graph, plot = T, filetype = "png",

filename = "nhanes_mf_bic", plot.community = T)

4.6. Community analysis of the minimal forest

In the following section, we inspect communities 1, 3, 5, 6, 7, and 8 of the minimal forest
graph to demonstrate the functionally of the algorithm.

Most of the nodes in community 1 (Fig. 8b) are related to red blood cells and body biochem-
istry profile. There is an association between LBDHDD (direct HDL-cholesterol) and RIAGENDR

(gender) in this community, shown in Fig. 9a.

> signif <- nhanes_mf$significance

> signif[signif$edges.from == 'RIAGENDR' & signif$edges.to == 'LBDHDD', ]

edges.from edges.to statistics p.value

RIAGENDR LBDHDD 619.5036 1.737264e-13

> plot_assoc(nhanes, vars = c("LBDHDD", "RIAGENDR"))

Fig. 10a shows another relation in community 1, which is between nodes LBXHGB (hemoglobin)
and LBXSIR (refrigerated iron in blood). Community 3 (Fig. 8c) mostly includes chemical
compounds and vitamins (i.e. E, C, B12, and D). As an example, the scatter plot of two
variables LBXVIE (vitamin E) and LBXTC (totoal cholesterol) is illustrated in Fig. 10b. There
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Figure 8: Minimal forest. (a) The graph is constructed using min_forest function with
BIC method. The nodes indicate variables in the dataset and are colored with respect to their
community. (b) community 1: red blood and body biochemistry profile. (c) community 3:
chemical compounds and vitamins. (d) community 5: physical activity, health condition, and
diabetes. (e) community 6: depression and sleeping status. (f) community 7: white blood
cells. (g) community 8: body measurements and blood pressure.
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are also two connected nodes SMD410 (smoking in household) and LBXCOT (cotinine) in this
community that their relation is shown in Fig. 9c. Nodes in community 5 (Fig. 8d) indicate
three groups of variables, namely, physical activity, health condition, and diabetes. There is
a chain relation that connects DRD360 (eating fish in past 30 days) to diabetes group through
node DRQSDIET (being on a special diet). DRD360 is also connected to LBXTHG (total mercury
in blood). The relation is plotted in Fig. 9b. DPQ030 (trouble with sleeping) connects sleep
disorder nodes to variables about depression in community 6 (Fig. 8e). Community 7 (Fig.
8f) consists of different types of white blood cells. Body measurement variables and blood
pressure are located in community 8 (Fig. 8g).

4.7. Variable-wise KL-divergence

Focusing on the variable PAD590 (TV usage) we select two groups of samples: (i) The par-
ticipants who watch TV less than an hour (g1) and (ii) those who watch more than 5 hours
(g2) a day . We use VKL function with permute = 1000 so as to find the most different fea-
tures between these two groups. In the following code, we get five variables with the highest
KL-divergence values excluding PAD590.

> g1 <- which(nhanes$PAD590 == 1)

> g2 <- which(nhanes$PAD590 == 6)

> KL <- VKL(nhanes, group1 = g1, group2 = g2, permute = 1000)

> KL[2:6, ]

KL variable p.value

HSD010 0.2581593 HSD010 0.001

PAQ520 0.2193065 PAQ520 0.001

HUQ010 0.2157753 HUQ010 0.001

RIDAGEYR 0.2094270 RIDAGEYR 0.001

LBXALC 0.2066657 LBXALC 0.001

HSD010 (general health condition) is the most different variable between g1 and g2 based on
KL-divergence values. See Table 1 for description of the other variables.

4.8. Violating Variable-wise Kulback-Leibler Divergence

As Fig. 10b shows, there is an approximately linear relationship between vitamin E and
total cholesterol. Using VVKL function with permute = 100, we find the most important
(categorical) variables violating such linear relationship. The result suggests DSD010 (taking
dietary supplements) and DRQSPREP (type of table salt used) as variables with the highest
KL-divergence. Two groups of samples with the highest absolute residual values (top 5 %)
with respect ot the fitted line are remarked as outliers and highlighted in Fig. 11.

> KL <- VVKL(nhanes[, 75:160], var1 = nhanes$LBXVIE, var2 = nhanes$LBXTC,

plot = T, var1.name = "LBXVIE", var2.name = "LBXTC", permute = 100)

> head(KL$kl)

> KL$plot

KL variable p.value

DSD010 0.1485264 DSD010 0.01

DRQSPREP 0.1466014 DRQSPREP 0.01

PAD440 0.1273735 PAD440 0.01
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(a) (b)

(c)

Figure 9: Boxplot of (a) LBDHDD (direct HDL-cholesterol. mg/dL) and RIAGENDR (gender.
1 for Male and 2 for Female), (b) LBXTHG (total mercury in the blood. ug/L) and DRD360

(eating fish in past 30 days. 1 for Yes, 2 for No, 3 for Refused and 4 for Don’t know), (c)
LBXCOT (cotinine. ng/mL) and SMD410 (smoking in household. 1 for Yes and 2 for No). The
plots are colored according to the different levels of their categorical variable. points in these
plots represent samples in the data.
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(a) (b)

Figure 10: Scatter plot of (a) LBXHGB (hemoglobin. g/dL) and LBXSIR (refrigerated iron in
blood. ug/dL), (b) LBXTC (total cholesterol. mg/dL) and LBXVIE (vitamin E. ug/dL). Each
point in the plots indicates a sample in the data.

BPQ020 0.1253917 BPQ020 0.01

RIAGENDR 0.1169647 RIAGENDR 0.01

DBQ095Z 0.1115717 DBQ095Z 0.01

4.9. Clustering with minimal forest

In order to show the functionality of minimal forest in clustering, we select a subsample of size
200 and apply min_forest function on the subsampled dataset. Therefore the transposed
dataset is passed to the funciton. Fig. 12 illustrates the stratified population of the samples.

> t_nhanes <- as.data.frame(sapply(as.data.frame(t(nhanes[1:200, ])),

function(x) as.numeric(as.character(x))))

> clusters_mf <- min_forest(t_nhanes)

> clusters_vis <- graph_vis(clusters_mf$graph, plot = T,

filename = "clusters", filetype = "png")

Dimensionality reduction algorithms can be used in order to get a proper visualization of
data in low (i.e., two or three) dimensions. We use dim_reduce function with tsne and umap

methods to plot the aforementioned subpopulation in two dimensions. The points are colored
according to their communities within the minimal forest in Fig. 12. As one can see in Fig.
13 the samples within each community are clustered together, in a fairly accurate manner,
particularly with UMAP.

> communities <- clusters_mf$communities

> communities <- communities[match(c(1:200), as.integer(names(communities)))]

## Using 'umap' method

> ump <- dim_reduce(nhanes[1:200,], method = "umap", annot1 = as.factor(communities)
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Figure 11: Scatter plot of LBXTC (total cholesterol. mg/dL) and LBXVIE (vitamin E. ug/dL).
A line is fitted to the variables and the samples with absolute residual values within the highest
5 percentile are considered as the outliers. The two outlier groups are colored with red and
green colors.

Figure 12: Population stratification (clustering) with minimal forest. The graph is
constructed using min.forest function with BIC method on the transposed dataset. The
nodes represent samples and are colored according to the graph communities.
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Figure 13: Two-dimensional visualization of the subsampled dataset. The funciton
dim_reduce is used with parameter method set to umap (on left) and tsne (on right) to
perform dimensionality reduction. The nodes are colored based on their community in the
minimal forest illustrated in Fig. 12.

, annot1.name = "minimal forest\n communities")

## Using 'tsne' method

> tsn <- dim_reduce(nhanes[1:200,], method = "tsne", annot1 = as.factor(communities)

, annot1.name = "minimal forest\n communities")

## Using cowplot to plot with shared legend

> require(cowplot)

> require(ggplot2)

> leg <- get_legend(ump + theme(legend.position = "bottom"))

> plt <- plot_grid(ump + theme(legend.position = "none"),

tsn + theme(legend.position = "none"))

> plot_grid(plt, leg, ncol = 1, rel_heights = c(1, .2))

5. Conclusions

In this document, we introduced muvis as a set of tools for analysis and visualization of mul-
tivariate data. The package provides the users with an easy-to-use and end-to-end analysis
pipeline. The methods implemented in muvis can be applied on a wide range of datasets
with high number of variables and observations. It can be used for data preprocessing
(data_preproc), statistical analysis (VKL, VVKL, test_assoc, ggm, dgm, and min_forest),
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and visualization (plot_assoc, graph_vis, and dim_reduce). As demonstrated in section 4,
the results assert the functionality of the package on real data: preprocesing method could
effectively detect and eliminate the outliers; the GMs were efficient to simultaneously estimate
the structure of associations and interpretations; and the visualization method could easily
visualize associations among variables. We also introduced novel KL-based methods for deter-
mining important variables that could explain surprising observations, including violation of
expected linear associations. This work can be extended in several directions: providing pre-
dictive models (e.g. elastic nets, ensemble methods, etc.), non-Gaussian GMs, and enhanced
imputation methods.

6. License

This package is available under GNU General Public License (GPL) version 3.
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Table 1: Description of mentioned variables.

Variable Label

SEQN Respondent sequence number

LBDHDD Direct HDL-Cholesterol (mg/dL)

DRQSDIET On special diet?

DRQSPREP Salt used in preparation?

LBXVIC Vitamin C (mg/dL)

LBXALC Alpha-carotene (ug/dL)

DRD360 Fish eaten during past 30 days

LBXVIE Vitamin E (ug/dL)

PAD590 # hours watch TV or videos past 30 days

DSD010 Any Dietary Supplements Taken?

LBXFOL Folate, serum (ng/mL)

PAD440 Muscle strengthening activities

PAQ100 Tasks around home/yard past 30 days

PAD200 Vigorous activity over past 30 days

HUQ050 # times receive healthcare over past year

LBXSATSI Alanine aminotransferase ALT (U/L)

LBXSAL Albumin (g/dL)

PAQ180 Avg level of physical activity each day

LBXSCH Cholesterol (mg/dL)

SMD410 Does anyone smoke in home?

LBXHCT Hematocrit (%)

LBXHGB Hemoglobin (g/dL)

LBXSIR Iron, refigerated (ug/dL)

LBXMOPCT Monocyte percent (%)

LBXRBCSI Red blood cell count (million cells/uL)

LBXRDW Red cell distribution width (%)

LBXSTR Triglycerides (mg/dL)

LBXSUA Uric acid (mg/dL)

LBXWBCSI White blood cell count (1000 cells/uL)

BMXBMI Body Mass Index (kg/m**2)

LBXBCD Cadmium (ug/L)

LBXCOT Cotinine (ng/mL)

BPQ020 Ever told you had high blood pressure

HUQ010 General health condition

LBXTHG Mercury, total (ug/L)

LBXTC Total Cholesterol (mg/dL)

RIDRETH1 Race/Ethnicity

RIAGENDR Gender

PAQ520 Compare activity w/others same age

HSD010 General health condition

DBQ095Z Type of table salt used
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Véron J, Rohrbasser JM (2003). “Wilhelm Lexis: the normal length of life as an expression
of the ”nature of things”.” Population, 58(3), 303–322. ISSN 0032-4663. doi:10.2307/

3271331.

Wasserman L (2013). All of statistics: a concise course in statistical inference. Springer
Science & Business Media.

Wickham H (2010). “ggplot2: elegant graphics for data analysis.” J Stat Softw, 35(1), 65–88.

27

http://dx.doi.org/10.1007/b98963
http://link.springer.com/10.1007/b98963
http://link.springer.com/10.1007/b98963
http://dx.doi.org/10.2307/3271331
http://dx.doi.org/10.2307/3271331

	Introduction
	Introduction
	Theoretical Background
	Theoretical Background
	Graphical Models
	Graphical Models
	Variable-wise KL-divergence
	Variable-wise KL-divergence

	Package Implementation
	Package Implementation
	Preprocessing
	Preprocessing
	Test Associations
	Test Associations
	Plot Associations
	Plot Associations
	Graphical Models
	Graphical Models
	KL-based Functions
	KL-based Functions

	The NHANES 2005-2006 dataset
	The NHANES 2005-2006 dataset
	Loading the package and data
	Loading the package and data
	Preprocessing
	Preprocessing
	GM for continuous data
	GGM for continuous data
	Causal network for continuous data
	Causal network for continuous data
	Minimal forest for mixed data
	Minimal forest for mixed data
	Community analysis of the minimal forest
	Community analysis of the minimal forest
	Variable-wise KL-divergence
	Variable-wise KL-divergence
	Violating Variable-wise Kulback-Leibler Divergence
	Violating Variable-wise Kulback-Leibler Divergence
	Clustering with minimal forest
	Clustering with minimal forest

	Conclusions
	Conclusions
	License

