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Supplementary Appendix 

1. Model configuration 
The initial prior ranges of the parameters for the model (Equations 1-5 in the 
main text) are drawn from uniform distributions with the following prior ranges:  

• 𝛽: the transmission rate of symptomatically infected patients. 0.6 ≤ 𝛽 ≤ 1.5 
• 𝜇: the multiplicative factor reducing the transmission rate of unreported 

infected patients. 0.2 ≤ 𝜇 ≤ 1. 
• 𝜃: the multiplicative factor to adjust mobility data estimates of human 

movement between cities. 1 ≤ 𝜃 ≤ 1.75. 
• 𝑍: the mean latency period. 2	𝑑𝑎𝑦𝑠 ≤ 𝑍 ≤ 5	𝑑𝑎𝑦𝑠. 
• 𝛼: the fraction of infections that develop severe symptoms. 0.02 ≤ 𝛼 ≤ 0.8.  
• 𝐷: the average duration of infection for infected patients. 2	𝑑𝑎𝑦𝑠 ≤ 𝐷 ≤

5	𝑑𝑎𝑦𝑠. 
We model the transmission of COVID-19 in China from January 10th, 2020 to 
January 23rd, 2020. Strict travel restrictions were implemented in several 
Chinese cities beginning January 23rd, 2020. As a result, the 2018 mobility data 
we use are likely not representative of inter-city human movement after January 
23rd. 

2. Model-inference framework 
We infer model epidemiological parameters using an iterated filtering (IF) 
approach (1-3). To account for the high-dimensionality of the model, rather than 
employ a particle filter (4) (i.e. a sequential Monte Carlo approach), we used an 
efficient data assimilation method – the Ensemble Adjustment Kalman Filter 
(EAKF) (5) within the IF algorithm. Particle filters require a large number of 
particles (6); however, the EAKF can generate similar results using only 
hundreds of ensemble members (7). For this IF-EAKF approach, an ensemble of 
system states, which represent the distribution of parameters, is repeatedly 
adjusted using the EAKF in a series of iterations, during which the variance of the 
parameters is gradually tuned down. Through this process, the distribution of 
parameters is iteratively optimized per observations and converges to values that 
approach maximum likelihood. Details of the IF-EAKF algorithm can be found in 
Ref. (3). 
We used the daily number of reported cases in city 𝑖 on a given day 𝑡, 𝑦78, as 
observations. For each 𝑦78, we assume a heuristic observation error variance 
(OEV): 

𝑦78 = max =4,
(𝑦78)B

5 C. 

Similar forms of OEV have been successfully used for inference and forecasting 
for a range of infectious diseases including influenza (8-12), Ebola (13), West 
Nile virus (14) and respiratory syncytial virus (15). In total, 10 rounds of EAKF 



were performed for the inference. After each round of assimilation with the EAKF, 
the standard deviation for each parameter was reduced by 10%. 

3. Calculation of 𝑹𝒆 in Wuhan city 
We calculated the effective reproductive number 𝑅G in Wuhan city using the 
inferred parameters. Specifically, 𝑅G is the largest eigenvalue of the next-
generation matrix (NGM) (16,17). Define 𝑋 = [𝐸, 𝐼L, 𝐼M]O and 𝑌 = [𝑆, 𝑅]O. The 
vectors for new infection and other rates are: 
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The disease-free equilibrium is 𝑥` = [0,0,0, 𝑁, 0]O. We then have 
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The NGM is 𝐾 = 𝐹𝑉pq. 𝑅G is then computed as the leading eigenvalue of the 
NGM 𝐾, i.e.,  

𝑅G = 𝛼𝛽𝐷 + (1 − 𝛼)𝜇𝛽𝐷. 
 

4. Synthetic test 
Before applying the model-inference framework to the observed COVID-19 
incidence data, we tested the model-inference framework using model-generated 
outbreaks. Specifically, we generated a synthetic outbreak using a free 
simulation of the metapopulation model with a set of specified parameters. We 
then ran IF-EAKF inference using the daily cases for each city, as generated in 
stochastic free simulation, as observations. The aim is to determine whether 
model inference framework can ingest observations and recover the specified 
parameters.  This assessment of the performance of the inference algorithm also 
allows inspection of the sensitivities of the inference results to model 
assumptions. 
 



4.1. Accuracy of parameter estimation 
We first generated a synthetic outbreak using the following parameter values: 
𝛽 = 1.0, 𝜇 = 0.8, 𝜃 = 1.5, 𝑍 = 4 days, 𝛼 = 0.1, 𝐷 = 4 days, 𝑇s = 4.6 days. For the 
IF, a 300-member ensemble was used. Priors of variables and parameters were 
drawn from the ranges reported in Section 1 of this Supplementary Appendix 
using a Latin Hypercubic Sampling algorithm. We used 𝑆𝑒𝑒𝑑uvd = 500 in Wuhan 
city to initiate the outbreak. During inference, the seeding parameter 𝑆𝑒𝑒𝑑uvd 
was also set as 500. 
To account for stochastic effects, we applied the IF-EAKF inference algorithm 
300 times and report the distributions of estimated parameters. All parameters 
were accurately estimated (Fig. S1) and the effective reproductive number 𝑅G 
was recovered (Fig. S2). 

 
Fig. S1. Accuracy of parameter estimation. The actual parameters used in 
generating the synthetic outbreak are depicted by vertical red lines. Blue bars 
represent the distribution of the posterior parameter estimates. The ranges of the 
x-axis are set as the initial prior parameter ranges. 



 
Fig. S2. Comparison of the actual 𝑅G (vertical red line) and the distribution of 
estimated 𝑅G (blue bars). 

To further validate the inference approach, we also tested the system on another 
synthetic outbreak generated with a lower 𝑅G (𝛽 = 1.0, 𝜇 = 0.6, 𝜃 = 1.5, 𝑍 = 4 
days, 𝛼 = 0.2, 𝐷 = 4 days, 𝑇s = 4.6 days). Again, epidemiological parameters 
and 𝑅G were captured by the estimated distributions (see Figs. S3-4). 

 
Fig. S3. Accuracy of parameter estimation. The actual parameters used in 
generating the synthetic outbreak are depicted by vertical red lines. Blue bars 
represent the distribution of the posterior parameter estimates. The ranges of the 
x-axis are set as the initial prior parameter ranges. 



 
Fig. S4. Comparison of the actual 𝑅G (vertical red line) and the distribution of 
estimated 𝑅G (blue bars). 

A third synthetic outbreak with a higher reporting rate (𝛼 = 0.5) was additionally 
tested (𝛽 = 1.0, 𝜇 = 0.6, 𝜃 = 1.5, 𝑍 = 4 days, 𝛼 = 0.5, 𝐷 = 4 days, 𝑇s = 4.6 
days). As shown in Figs. S5-6, this high reporting rate was also accurately 
estimated. 

 
Fig. S5. Accuracy of parameter estimation. The actual parameters used in 
generating the synthetic outbreak are depicted by vertical red lines. Blue bars 
represent the distribution of the posterior parameter estimates. The ranges of the 
x-axis are set as the initial prior parameter ranges. 



 
Fig. S6. Comparison of the actual 𝑅G (vertical red line) and the distribution of 
estimated 𝑅G (blue bars). 

4.2. Sensitivity of parameter estimation to seeding 
As the numbers of exposed (𝐸) and unreported infected (𝐼M) population are 
unobserved, we estimated these state variables along with the other 
parameters/variables using the IF-EAKF approach. In particular, 𝐸 and 𝐼M may be 
sensitive to the initial seeding (𝑆𝑒𝑒𝑑uvd). It is thus critical to examine the 
sensitivity of the overall parameter estimation to the seeding parameter 𝑆𝑒𝑒𝑑uvd. 
We repeated the inference shown in Figs. S1-2 using a higher seeding 
parameter 𝑆𝑒𝑒𝑑uvd = 1,000 (the true 𝑆𝑒𝑒𝑑uvd is 500). As shown in Figs. S7-8, 
with a mis-specified, higher prior for 𝑆𝑒𝑒𝑑uvd, the reporting rate 𝛼 is slightly 
underestimated. However, the estimation biases for other parameters are limited 
and 𝑅` is also identified. 

 



Fig. S7. Accuracy of parameter estimation. The actual parameters used in 
generating the synthetic outbreak are depicted by vertical red lines. Blue bars 
represent the distribution of the posterior parameter estimates. The ranges of the 
x-axis are set as the initial prior parameter ranges. The actual seeding parameter 
for the synthetic outbreak is 𝑆𝑒𝑒𝑑uvd = 500, while 𝑆𝑒𝑒𝑑uvd was set as 1,000 
during inference. 

 
Fig. S8. Comparison of the actual 𝑅G (vertical red line) and the distribution of 
estimated 𝑅G (blue bars). 

5. Inference using documented cases 
We used the reported cases from 375 Chinese cities during January 10th, 2020 to 
January 23rd, 2020 to infer model parameters. In total, 770 cases were reported, 
with 454 cases in Wuhan city and 500 in Hubei province. 
We tested a range of seeding parameters (𝑆𝑒𝑒𝑑uvd =	3000, 4000, 5000 and 
6000) and reporting delays (𝑇s = 6, 7, 8, 9, 10, 11 and 12 days). For each 
combination of seeding and reporting delay parameters, we ran the inference 
300 times. To validate the estimates, we generated 300 outbreaks using the 
inferred parameters and corresponding seeding parameters, and then compared 
the distributions of simulated new cases in all cities with reported case 
observations. The goodness-of-fit was measured using log-likelihood (LL). The 
log-likelihood is computed using a Poisson distribution fitted to the simulation 
outcomes in each city. For each observation, we calculate the logarithmic value 
of the weight assigned to a +/-2 interval around the reported incidence. LL is the 
sum of these values. Inference results for the best-fitting model with the 
maximum LL (𝑆𝑒𝑒𝑑uvd = 5000, 𝑇s = 10 days, LL=-176.38) are shown in Table 1 
of the main text, and model fitting for this inference solution is shown in Fig. 1 of 
the main text. 

6. Spatial movement of COVID-19 in China 



Using the best-fitting model (𝑆𝑒𝑒𝑑uvd = 5000, 𝑇s = 10 days), we generated 300 
simulated outbreaks starting January 10th until January 23rd. We computed the 
daily number of cities with cumulative incidence ≥ 10, and compared these 
distributions with the reported numbers of invaded cities during the same period 
(Fig. S9). The observations and simulations are in good agreement. 
 

 
Fig. S9. Model-generated distributions of the number of cities with cumulative 
incidence ≥ 10 at each day from January 10th to January 23rd. Red crosses are 
reported numbers until January 23rd. 

7. Sensitivity of parameter estimates 
Distributions for estimated parameters and 𝑅` for different settings of 𝑆𝑒𝑒𝑑uvd 
and 𝑇s are shown in Fig. S10. Estimations of 𝛽, 𝜇, 𝜃, 𝑍 and 𝐷 are robust to 
different settings of 𝑆𝑒𝑒𝑑uvd and 𝑇s. Estimation of the reporting rate 𝛼 is more 
sensitive to 𝑆𝑒𝑒𝑑uvd and 𝑇s, but generally falls within the range between 0.1 and 
0.2. The effective reproductive number 𝑅G is also robustly estimated between 2.0 
and 2.5. 



 
Fig. S10. Distributions of estimated parameters and 𝑅` for different settings of 
𝑆𝑒𝑒𝑑uvd and 𝑇s. Boxes show median and interquartile values and whiskers 
indicate the 95% CIs.  

8. Inference of model parameters after January 23rd 
We modeled the transmission of COVID-19 in China after implementation of 
control measures on January 23. These control measures included: travel 
restrictions imposed between major cities and Wuhan; self-quarantine and 
contact precautions advocated by the government; and more available rapid 
testing for infection confirmation (18-19). These control measures along with 
changes in care-seeking behavior due to increased awareness of the virus and 
increased personal protection behavior (e.g. wearing of facemasks, self-isolation 
when sick), likely altered the epidemiological characteristics of the outbreak after 
January 23. To quantify these differences, we re-estimated the system 
parameters using the metapopulation model-inference framework and city-level 
daily cases reported between January 24 and February 8. As inter-city mobility 
was restricted, we set 𝜃 = 0. In addition, to represent reduced person-to-person 
contact and increased infection detection, we updated the initial priors for 𝛽 and 
𝛼 to [0.2, 1.0] and [0.2, 1.0], respectively.  

We tested a range of reporting delays, 𝑇s, from 3 days to 10 days, given the fact 
that this delay may have been reduced due to the increasing availability of 
assays and changes in medical care-seeking behavior. We used the daily 
reported cases in all cities to compute the log-likelihood.  

In order to reflect the rapid change in control efforts, we inferred model 
parameters during two overlapping periods: January 24 to February 3 and 
January 24 to February 8. For these periods, the best-fitting models are shown in 
Fig. S11 and Fig. S12. Estimated parameters, 𝑅G and goodness-of-fit are 
reported in Table 2 of the main text. 



 

 
Fig. S11. Model fitting (𝑇s = 5 days) to documented cases in all cities through 
February 3, 2020 (left). The distribution of estimated 𝑅G is shown in the right 
panel. 

 
Fig. S12. Model fitting (𝑇s = 5 days) to documented cases in all cities through 
February 8, 2020 (left). The distribution of estimated 𝑅G is shown in the right 
panel. 
 
 



To further test the sensitivity of this parameter estimation during January 24 and 
February 8 to the initial priors, we repeated the inference using a different set of 
priors for 𝛽 and 𝛼: 𝛽 ∈ [0.2, 1.2] and 𝛼 ∈ [0.2, 0.8]. These estimated parameters 
are shown in Table S1. The estimated parameters generally match with the 
estimates in Table 2 of the main text. 
 
Table S1. Best-fit model posterior estimates of key epidemiological parameters 
for simulation of the model without travel between cities from January 23, 2020 to 
February 8, 2020 and using a different set of priors: 𝛽 ∈ [0.2, 1.2] and 𝛼 ∈
[0.2, 0.8]. 

Parameter Meaning Median estimates 
(95% CIs) 

𝛽 Transmission rate 0.36 (0.29, 0.57) 
𝜇 Relative transmission rate  0.41 (0.28, 0.70) 
𝑍 Latency period 3.47 (3.19, 3.87) 
𝛼 Reporting rate 0.68 (0.46, 0.75) 
𝐷 Infectious period 3.50 (3.18, 3.76) 

𝑅G 
Effective reproductive 

number 1.03 (0.81, 1.53) 

 

9. Independent model validation using infection rates among 
evacuees to other countries 
A recent study (20) summarized infection rates in evacuees to Singapore, South 
Korea, Japan and Germany at the end of January. The average infection rate 
was reported as 1.39%. Based on this estimate, we performed two independent 
tests to corroborate the parameters inferred by the metapopulation model. 
1). According to the official report, around 5 million people left Wuhan city before 
January 23. The total population in Wuhan city after January 23 (when travel 
restrictions were imposed) is therefore around 6 million. A 1.39% infection rate 
suggests an estimated 83,400 infections prior to February 1 in Wuhan. 
Simulation with the metapopulation model using inferred parameters produce a 
total infected population of 106,010 (95% CI [22,005, 201,535]) before Feb 1, 
which generally matches the estimated 83,400 infections in magnitude. 
2). In our model, infections occurring prior to February 1 will be documented with 
a reporting delay (as inferred, an average of 10 days before January 23 and 5 
days after January 23). For simplicity, we assume the reporting delay for each 
person is constant. Based on this assumption, infections before February 1 
should continue appearing until February 6. The cumulative confirmed cases for 
February 6 in Wuhan is 11,577, which suggests a reported infection rate of 
11,577/6 millions = 0.19%. Compared with the infection rate 1.39% (20), the 
reporting rate in Wuhan should be 0.19%/1.39%=13.67%. This estimate agrees 
with our inferred reporting rate of 14% before January 23. 
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