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Supplementary information 

Supplementary Text and Figures 

 

Quantitative characterisation of methods and generation of heatmaps 

To systematically compare all the methods. We stochastically, modelled mixture populations 

comprising of random samples (sampled from the reference populations with replacement) at 

defined proportions of each reference population, 𝑝𝐶
∗  and sample size, 𝑛. The proportion and 

sample size were systematically varied, with 𝑝𝐶
∗  ranging from 0 to 1 in 0.01 (1%) steps while 𝑛 

ranged from 100 to 2,500 in steps of 100 samples. All four methods were applied to each 

combination of these parameters. At each point in the parameter space, we estimated the 

prevalence (𝑝𝐶) and its confidence intervals (following the methodology from the paper) and 

we compared it with the model proportion (𝑝𝐶
∗ ) used to generate them. This idealised scenario 

allows a direct head-to-head comparison of accuracy between all four methods. Results of this 

comparison are presented in Supplementary Figs 1 and 2. 

Supplementary Figs 1 and 2 show: 

- (1st row) Mean value of the estimates of prevalence 𝒑𝑪
′  in the 100,000 bootstrap 

samples, 

- (2nd row) Bias corrected prevalence estimate 𝒑𝑪, 

- (3rd row) Deviation from the true proportion 𝒑𝑪 − 𝒑𝑪
∗ , 

- (4th row) The width of confidence (𝑪𝑰𝑼 − 𝑪𝑰𝑳) intervals, 

- Reference populations and an example of a skewed distribution of the 𝒑𝑪
′  values. 
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Supplementary Figure 1: A comparison of the four methods using the (Type 1 GRS) dataset. 
(Top row) Mean value of the 100,000 estimates of prevalence (𝒑𝑪

′ ) in the bootstrap samples 
across defined mixture proportions (𝒑𝑪

∗ ) and the mixture sample size (𝒏) of the dataset for 
each method. (Second row) Bias corrected prevalence estimates (𝒑𝑪) across the constructed 
samples. (Third row) deviation from the true proportion (𝒑𝑪 − 𝒑𝑪

∗ ) across the constructed 
samples. (Bottom row) The width of confidence (𝑪𝑰𝑼 − 𝑪𝑰𝑳) intervals of the individual 
estimates across the constructed samples. The purple colour indicates regions in which the 
distributions of 𝒑𝑪

′  are skewed which may affect estimation of the 𝑪𝑰. It can be observed that 
across the parameter space, the Means, EMD and KDE methods all typically outperform the 
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Excess method. It is also evident that sample sizes of approximately 1,000 or more are 
generally sufficient for each method. A further increase of sample sizes would be 
recommended in order to properly estimate 𝑪𝑰 of the most extreme proportions. 
Calculations were based on the following participants: type 1 diabetes cases WTCCC, type 2 
diabetes cases WTCCC. 
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Supplementary Figure 2: A comparison of the four methods using the (Type 2 GRS) dataset. 
(Top row) Mean value of the 100,000 estimates of prevalence (𝒑𝑪

′ ) in the bootstrap samples 
across defined mixture proportions (𝒑𝑪

∗ ) and the mixture sample size (𝒏) of the dataset for 
each method. (Second row) Bias corrected prevalence estimates (𝒑𝑪) across the constructed 
samples. (Third row) deviation from the true proportion (𝒑𝑪 − 𝒑𝑪

∗ ) across the constructed 
samples. It can be observed that with highly overlapping reference distributions, the Means, 
EMD and KDE methods all clearly outperform the Excess method. It is also evident that 
extreme proportions are much harder to estimate for these mixtures compared to the Type 1 
GRS mixtures. (Bottom row) The width of confidence intervals (𝑪𝑰𝑼 − 𝑪𝑰𝑳) of the individual 
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estimates across the constructed samples. The purple colour indicates regions in which the 
distributions of (𝒑𝑪

′ ) are skewed which may affect estimation of the 𝑪𝑰. Estimates with the 
Type 2 GRS are typically much more variable across the parameter space compared to when 
using the more discriminative Type 1 GRS scores. Calculations were based on the following 
participants: type 1 diabetes cases WTCCC, type 2 diabetes cases WTCCC. 
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Supplementary Figure 3: Illustration of the approaches used to calculate the initial point-

estimate 𝒑𝑪
𝒊  throughout the paper. The initial point-estimate 𝒑𝑪

𝒊  can be estimated from data 

(real or simulated) or can be fixed by hand. We used simulated data or a fixed value of 𝒑𝑪
𝒊  to 

evaluate the methods by comparing them with the true prevalence 𝒑𝑪
∗  (results illustrated in 

Figs 3 and 4, Supplementary Figs 1 and 2, respectively). 
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Supplementary Figure 4: Illustration of the steps used in estimation of the prevalence 𝒑𝑪 and 
its confidence intervals. To find a bias corrected estimate of prevalence and its confidence 

intervals, we are using the initial point-estimate 𝒑𝑪
𝒊  and the reference samples. We generate 

𝑵𝑴 = 𝟏𝟎𝟎 sample mixture populations with a given composition (𝒑𝑪
𝒊 ) and sample size (𝒏) 

equal to the size of the original mixture sample. Next, we resample (with replacement) each 
of the 𝑵𝑴 = 𝟏𝟎𝟎 new mixtures generating 𝑵𝑩 = 𝟏, 𝟎𝟎𝟎 bootstrap samples. We apply a 
chosen method to all generated samples and obtain 𝑵𝑴 ∙ 𝑵𝑩 =  𝟏𝟎𝟎, 𝟎𝟎𝟎 estimates 𝒑𝑪

′ . We 
then use the methods described in section “Calculating confidence intervals” to find each bias 
corrected point-estimate 𝒑𝑪 and their confidence intervals. Finally, if we are evaluating the 
methods, we compare the bias corrected point-estimate 𝒑𝑪 with the true prevalence 𝒑𝑪

∗ . 
Generally, for real world applications the true prevalence 𝒑𝑪

∗  is unknown. 
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The mixture assumption 

To check if the mixture assumption, 𝑝𝐶 + 𝑝𝑁 = 1, is satisfied, three different errors of the point 

estimates of prevalence derived from the EMD and KDE methods, eEMD,1, eEMD,2, eKDE could be 

further analysed. The eEMD,1 error captures the deviation of the mixture from the convex 

combination of the two reference distributions. The eEMD,2 error is the EMD between the 

mixture and a model cumulative density function (CDF) based on the two independently 

estimated not normalised prevalence values 𝑝𝐶
𝐸𝑀𝐷 and 𝑝𝑁

𝐸𝑀𝐷. The eKDE error is the sum of 

squared residuals (multiplied by the Gaussian kernels bandwidth) from the least-square fitting 

procedure, which forms part of the KDE method. In order to interpret the values of the errors, 

we compared them with 100,000 bootstrapped error values (as in all other computations we 

use 100 mixtures * 1,000 bootstraps). The bootstrap samples are generated using the two 

reference populations and their composition is based on the initial point estimate of 

prevalence. In this way, we compare the error value of the investigated mixture sample with 

100,000 values from a model that explicitly assumes there are only two reference populations 

(i.e. 𝑝𝐶 + 𝑝𝑁 = 1). This approach allows us to check how likely is the observed error value to 

occur in the model for a given sample size and reference populations. The obtained bootstrap 

p-values are the number of bootstrapped modelled errors that are higher than the sample error 

and can be interpreted as the probability that the observed values of eEMD,1, eEMD,2 and eKDE are 

a result of the sampling error. The bootstrap p-values are equivalent to p-values of a traditional 

statistical test 8,22. 

 

Supplementary Figure 5 shows an example of a mixture of two populations (𝑝𝐶 + 𝑝𝑁 = 1) and 

an example of a mixture of three populations (with the third population constituting 7.5% of 

the mixture, 𝑝𝐶 + 𝑝𝑁 + 0.075 = 1). It illustrates how the eEMD,1, eEMD,2 and eKDE errors could be 

used to test the assumption that the mixture is composed of only two populations. In the first 

case where the mixture is composed of just two populations, the observed eEMD,1, eEMD,2 and 

eKDE values are small, and when compared with the 100,000 bootstrapped error values, they 

indicated that there is high chance: p=0.19 (eEMD,1), p=0.95 (eEMD,2) and p=0.96 (eKDE) of 

observing them due to the sampling error in the mixture sample. In the second case where the 

mixture is composed of three populations, comparison of the observed eEMD,1, eEMD,2 and eKDE 

values with the bootstrapped values shows that they are unlikely to be a result of the sampling 

error: p=0.0001 (eEMD,1), p<1e-5 (eEMD,2) and p=0.003 (eKDE). In fact, the value of eEMD,2 is smaller 

than any of the bootstrapped error values. However, the figure shows only one particular 

example and the performance of the methods will depend on the mixture composition 

(contribution of the other populations) and features of the reference and the other 

populations. 
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Supplementary Figure 5: Worked examples of checking the mixture assumption, 𝒑𝑪 + 𝒑𝑵 =
𝟏. A: An example of a mixture that consists of two populations and an example of a mixture 
that consists of three populations. Left: mixture of two reference populations (𝒑𝑪

∗ = 𝟎. 𝟓, 
𝒑𝑵

∗ = 𝟎. 𝟓). Right: mixture where the third population has a small contribution (𝒑𝑪
∗ = 𝟎. 𝟓, 

𝒑𝑵
∗ = 𝟎. 𝟒𝟐𝟓, 𝒑𝟑

∗ = 𝟎. 𝟎𝟕𝟓; R3 is a truncated normal distribution with mean 0.17 and std 
0.025). B: Illustration of the methods: eEMD,1, deviation from collinearity between the two 
reference distributions and the mixture; eEMD,2, EMD between the mixture and a model CDF 
based on the two independently estimated prevalence values; eKDE, the sum of squared 
residuals of the final fit. 

  
 


