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Abstract

In the global e�ort to combat the COVID-19 pandemic, governments and public health agencies
are striving to rapidly increase the volume and rate of diagnostic testing. The most common form
of testing today employs Polymerase Chain Reaction in order to identify the presence of viral RNA
in individual patient samples one by one. This process has become one of the most signi�cant
bottlenecks to increased testing, especially due to reported shortages in the chemical reagents
needed in the PCR reaction.

Recent technical advances have enabled High-Throughput PCR, in which multiple samples
are pooled into one tube. Such methods can be highly e�cient, saving large amounts of time
and reagents. However, their e�ciency is highly dependent on the frequency of positive samples,
which varies signi�cantly across regions and even within regions as testing criterion and conditions
change.

Here, we present two possible optimized pooling strategies for diagnostic SARS-CoV-2 testing
on large scales, both addressing dynamic conditions. In the �rst, we employ a simple information-
theoretic heuristic to derive a highly e�cient re-pooling protocol: an estimate of the target fre-
quency determines the initial pool size, and any subsequent pools found positive are re-pooled at
half-size and tested again. In the range of very rare target (<0.05), this approach can reduce the
number of necessary tests dramatically, for example, achieving a reduction by a factor of 50 for a
target frequency of 0.001. The second method is a simpler approach of optimized one-time pooling
followed by individual tests on positive pools. We show that this approach is just as e�cient for
moderate target-product frequencies (0.05<0.2), for example, achieving a two-fold in the number
of when the frequency of positive samples is 0.07.

These strategies require little investment, and they o�er a signi�cant reduction in the amount
of materials, equipment and time needed to test large numbers of samples. We show that both
these pooling strategies are roughly comparable to the absolute upper-bound e�ciency given by
Shannon's source coding theorem. We compare our strategies to the naïve way of testing and to
alternative matrix-pooling methods. Most importantly, we o�er straightforward, practical pool-
ing instructions for laboratories that perform large scale PCR assays to diagnose SARS-CoV-2
viral particles. These two pooling strategies may o�er ways to alleviate the bottleneck currently
preventing massive expansion of SARS-CoV-2 testing around the world.
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Expected Number of Tests in Repeated

Pooling

1 Number of Initial Batches

We assume a large number of samples each with a low probability, p, of testing positive. We look for
a protocol of pooling samples into batches that will minimize the expected number of total tests we
must perform. We observe that a binary test removes a maximal amount of uncertainty when its two
outcomes are equally likely. Therefore the �rst step of our protocol is to calculate the batch size b such
that the entire batch has a probability 1

2 of testing negative.

We write q = 1 − p, for the probability of a single sample testing negative. Then the probability
that an entire batch of size b tests negative is qb, and our desired batch size should satisfy:

qb =
1

2

Or

b =
− log 2

log q
= log 1

q
2

Pooling sampes into size b = log 1
q
2 yields batches that each have a probability 1

2 of testing posi-

tive/negative.

2 Multiple Positives per Batch

After testing the initial batches of size b, we must further test any positive-resulting batches. If we
could be sure each positive batch only had one positive sample in it, then the optimal thing to do would
be a binary search: splitting the batch in half, testing one half to identify the batch with a positive
sample, and then repeating the process with the positive batch. In our setting there may be more than
one positive sample in each batch, and we must therefore test both half-batches and they may both be
positive. This could lead to many additional tests if there are many postive samples in any given batch.

How many positive samples do we actually expect in each batch? We compute the conditional
probability of �nding k positive samples in a batch given that the batch as a whole came up positive.
Recall, we have constructed the batches such that each has a probability of qb = 1

2 of being entirely
negative. Thus the conditional probability distribution on the number of positive samples k in a
positive batch is

Pr [k|k > 0] =
Pr [k]

Pr [k > 0]
= 2Pr [k]

for all k > 0. And Pr [k] itself is distributed binomial(b, p) such that we have

Pr [k|k > 0] = 2

(
b
k

)
pkqb−k =

(
b
k

)
pkq−k
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Speci�cally, we compute the probability that k = 1, given a positive batch.:

Pr [k = 1|k > 0] =
bp

q
=

p

q
log 1

q
2

The �rst thing we note is that log 1
q
2 ≈ log 2

p(1+ p
2 )

to the second order in p. And then to leading order

in p we have

Pr [k = 1|k > 0] ≈ log 2

(1− p)
(
1 + p

2

) ≈ (1 + p

2

)
log 2

From this we conclude importantly that the lower bound for Pr [k = 1|k > 0] is log 2 ≈ 0.69. Beyond
the lower bound we also verify numerically that the linear approximation holds well for p < 0.1.
Furthermore, the expected number of positive samples, conditioned on the batch as a whole being
positive, is

E [k|k > 0] = 2E [k] = 2pb = 2p log 1
q
2 ≈ 2

(
1− p

2

)
log 2 < 1.4

Therefore, we can conclude that given a positive batch, the probability of it having only 1 pos-
itive sample is su�ciently high so as to justify the use of a binary search algorithm (See also the
Supplementary Figure, below).

3 Number of Tests on Each Positive Batch

We would like to calculate the expected number of tests that need to be performed on a postive batch
of size b, E [tests in batch|b]. We do this by conditioning on the number of positive samples in the
batch. We write b = 2n for simplicity, and we de�ne

N j
n ≡ E [tests in batch|b = 2n, k = j]

Our binary search protocol is as follows: given a positive batch, split it in two, test both halves,
and repeat on any positive batches. If we �nd a positive batch of size b = 4 or smaller, we simply test
each sample individually because there is no further bene�t to splitting the batch again. In order to
�nd one positive sample in a batch of size b we will need to split the batch log2 b times and perform
two tests after each splitting. Thus if k = 1 we perform 2 log2 b tests per positive batch. Thus, we
have

N1
n = 2n

We can alternately derive this expression for N1
n recursively, and we do that here as an introduction

to what follows. Given a batch of size b = 2n with exactly k = 1 positives, by our protocol we will
perform 2 tests and then split the batch into two half-batches of size b = 2n−1. By our assumption
that k = 1 we know that exactly one of the half batches will be positive, and therefore require an
additional N1

n−1 tests. Thus we have the recursive relation

N1
n = 2 +N1

n−1

The stopping condition of the recursion is N1
2 = 4. So unrolling this expression we have

N1
n = 2 + 2 + ...+ 2︸ ︷︷ ︸

2(n−2)

+4 = 2n
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Now suppose there are k = 2 positives in a batch . Splitting the batch in two is analogous to
�ipping two coins. There is a 1

2 chance the two positive samples will be in distinct half-batches, in
which case we perform two binary searches on batches of size b = 2n−1 each with k = 1, i.e. we perform
an additional N1

n−1 = 2 (n− 1) tests. There is also a 1
2 chance that both positive samples will be in

the same half-batch, in which case we will need to again perform binary search on a batch with k = 2,
this time of size b = 2n−1. Therefore we can write a recursive relationship for the number N2

n:

N2
n = 2 +N1

n−1 +
1

2
N2

n−1 = 2n+
1

2
N2

n−1

and this continues until n = 2, at which point we simply perform N2
2 = 4 additional tests. We

unroll this recursion to �nd:

N2
n = 2n+ (n− 1) +

1

2
(n− 2) + ...+ 4

We can rewrite this as a summation by observing that each term is a product of a whole number j,
that decreases by 1 at each step, multiplied by a power of 2 that decreases by 1 at each step. Thus we
write

N2
n =

n∑
j=2

21+j−nj

Next we rewrite this as

N2
n = 22−n

n∑
j=2

2j−1j

and observe that
∑

j r
j−1j = ∂

∂r

∑
j r

j . Furthermore,

n∑
j=2

rj =

n∑
j=0

−r − 1 =
1− rn+1

1− r
− r − 1

Thus by calculating the necessary derivative we �nd

n∑
j=2

2j−1j =
∂

∂r

(
1− rn+1

1− r

)
r=2

− 1 = 2n (n− 1)

Thus �nally we have:
N2

n = 4 (n− 1)

That is, the expected number of tests needed for a batch with two positive samples is 4 (log2 b− 1).

Now we would like to calculate

E [tests in batch|b = 2n] =

∞∑
k=1

Nk
nPr [k|k > 0]

For k = 1 recall the approximation derived above: Pr [k = 1|k > 0] ≈
(
1 + p

2

)
log 2. In practice we

�nd that the p-dependence does not impact the results of this calculation within the range of p < 0.2,
and we therefore use only the zeroth order term:

Pr [k = 1|k > 0] ≈ log 2
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We observe numerically that the probability of a positive batch having more than two positive
samples is smaller than 0.07 for all p, and therefore we approximate the number of tests per positive
batch by assuming a positive batch has either 1 or 2 positive samples (Supplementary Figure). Thus
we write

Pr [k = 2|k > 0] ≈ 1− log 2

And therefore we approximate

E [tests in batch|b = 2n] ≈ 2n log 2 + 4 (n− 1) (1− log 2)

or

E [tests in batch|b = 2n] ≈ 2n (2− log 2)− 4 (1− log 2)

4 Expected Number of Total Tests

If we begin with N total samples, then the number of initial batches to test is N
b . By construction the

expected number of positive batches is one half of that, so the expected total number of tests is

Ntests =
N

b

(
1 +

1

2
E [tests in batch|k > 0]

)
Using our approximation for E [tests in batch|b = 2n] above, with n = log2 b, we have

Ntests ≈
N

b

(2− log 2)︸ ︷︷ ︸
≈1.3

log2 b+ 2 log 2− 1︸ ︷︷ ︸
≈0.4


as presented in the main text.
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Figure 1: Conditional Distribution of the Number of Positive Samples Given a Positive

Batch for Di�erent Values of p
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