Towards harmonizing subtyping methods for neuroimaging studies in Alzheimer's disease

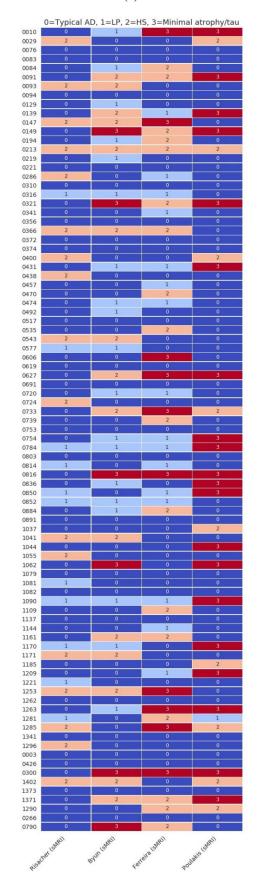
Rosaleena Mohanty^{*}, Gustav Mårtensson^{*}, Konstantinos Poulakis, J-Sebastian Muehlboeck, Elena Rodriguez Vieitez, Konstantinos Chiotis, Michel J. Grothe, Agneta Nordberg, Daniel Ferreira[#] and Eric Westman[#]

*Shared first authors; *Shared senior authors

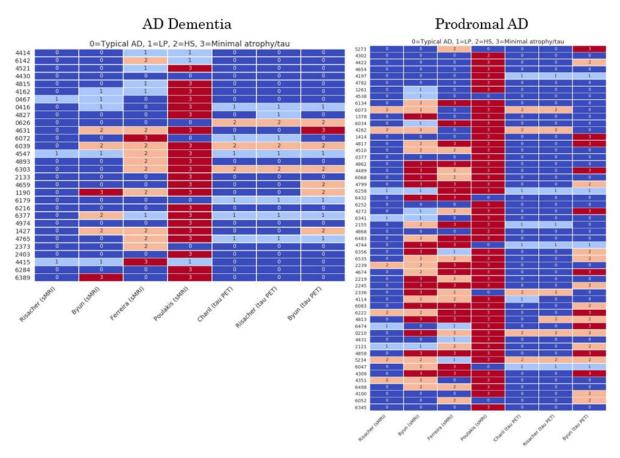
Supplementary Material

Method	Original Algorithm	Implemented Algorithm
Murray et al. (1)	Covariate adjustments: none	Not implemented in this study but described for interpretation of the imaging subtyping methods listed below
	Measure: postmortem NFT count	
	ROIs: hippocampus (CA1 and subiculum), middle frontal cortex, inferior parietal cortex, superior temporal cortex in both cerebral hemispheres	
	Method:	
	<u>1. Initial classification</u> : The ratio of the hippocampal to cortical NFT counts was split at the 25th and 75th percentiles of the sample distribution. Individuals with the ratio<25% were assigned to be hippocampal-sparing AD, while those with ratio>75% were assigned to limbic-predominant AD.	
	2. <u>Re-classification:</u> Hippocampal and cortical NFT counts were considered separately and compared to the overall median value of each. Individuals initially classified as hippocampal-sparing AD remained as such only if hippocampal BFT count>median hippocampal NFT count and cortical NFT count <median ad="" ad.<="" and="" as="" classified="" cortical="" count="" count.="" count<="" count<median="" hippocampal="" if="" individuals="" initially="" limbic-predominant="" median="" nft="" of="" only="" remainder="" remained="" such="" td="" the="" typical="" were=""><td></td></median>	
	<i>Subtypes:</i> typical, limbic-predominant and hippocampal-sparing AD	
Charil et al. (2)	Covariate adjustments: none	Same as the original algorithm except ROIs
	<i>Measure:</i> SUVR (tau PET)	were chosen from the

Table S1. Subtyping methods: original vs. implemented algorithms


	 <i>ROIs:</i> anterior-most position (head) of hippocampus, superior temporal gyrus, lateral parietal lobe (angular gyrus), lateral frontal lobe (mid-frontal gyrus) in both cerebral hemispheres (same regions as in Murray et al.) <i>Method:</i> Initial classification: The ratio of the hippocampal to cortical SUVR values was split at the 25th and 75th percentiles of the sample distribution. Individuals with the ratio<25% were assigned to be hippocampal-sparing AD, while those with ratio>75% were assigned to limbic-predominant AD. <u>Re-classification:</u> Hippocampal and cortical SUVR were considered separately and compared to the overall median value of each. Individuals initially classified as hippocampal-sparing AD remained as such only if hippocampal SUVR>median hippocampal SUVR and cortical SUVR>median cortical SUVR. Individuals initially classified as limbic-predominant AD remained as such only if hippocampal SUVR <i>Subtypes:</i> typical, limbic-predominant and hippocampal-sparing AD 	standard atlas (3) and SUVR values were partial volume corrected. We applied the algorithm on all available amyloid- positive prodromal AD and AD dementia individuals, while Charil et al., applied the algorithm on amyloid- positive individuals at Braak stage V or VI.
Risacher et al. (4)	 Covariate adjustments: intracranial volume, scanner field strength, age, sex Measure: cortical/subcortical volumes (sMRI) ROIs: hippocampus, lateral frontal (caudal and rostral midfrontal, pars opercularis, pars triangularis), superior temporal, and lateral parietal (inferior parietal, superior parietal, supramarginal) in both cerebral hemispheres Method: 1. Initial classification: The ratio of the hippocampal to cortical volumes was split at the 25th and 75th percentiles of the sample distribution. Individuals with the ratio<25% were assigned to be limbic-predominant AD, while those with ratio>75% were assigned to hippocampal-sparing AD. 2. <u>Re-classification:</u> Hippocampal and cortical volumes were considered separately and compared to the overall median value of each. Individuals initially classified as hippocampal-sparing AD remained as such only if hippocampal volume>median hippocampal volume and cortical volume>median cortical volume. Individuals initially classified as limbic-predominant AD remained as such only if hippocampal volume<median ad.<="" as="" classified="" cortical="" individuals="" li="" of="" remainder="" the="" typical="" volume.="" were=""> Subtypes: typical, limbic-predominant and hippocampal-sparing AD </median>	Same as the original algorithm except volume measures were adjusted for intracranial volume and age only, since all patients are from scanners with the same field strength in our study
Byun et al. (5)	Covariate Adjustment: intracranial volume Measure: cortical/subcortical volumes (sMRI) ROIs: hippocampus, middle frontal, superior temporal, inferior parietal in both cerebral hemispheres (same regions as in	Same as in the original algorithm except volume measures were adjusted for intracranial volume and age using multiple linear

Method:using a normative dataset. As part of our systematic analysis of methodological variations, we also investigated the effect of frontal (Zc), temporal (Zr) and parietal (Zp) volumes of individuals were clausified as the normative data. The cut-off value of Z-scores-1.0 determined the presence of prominent atrophy in each ROL.using a normative data volume or intractanial volume individuals were classified as both the datagring with three Z-scores (Zr, Zr, Zp)<-1, then individuals were classified as cortical atrophy only (hippocampal-sparing AD). If Zie-2- and all three Z-scores (Zr, Zr, Zp)<-1, then individuals were classified as both three Z-scores (Zr, Zr, Zp)<-1, then individuals were classified as both three Z-scores (Zr, Zr, Zp)<-1, then individuals were classified as both three Z-scores (Zr, Zr, Zp)<-1, then individuals were classified as both three Z-scores (Zr, Zr, Zp)<-1, then individuals were classified as both three Z-scores (Zr, Zr, Zp)<-1, then individuals were classified as both three Z-scores (Zr, Zr, Zp)<-1, then individuals were classified as both three Z-scores (Zr, Zr, Zp)<-1, then individuals were classified as both spared (minimal atrophy AD). Subtype: typical, limbic-predominant, hippocampal-sparing and minimal atrophy P. AD: central subscale; GCA-F)same as in the original atrophy -frontal subscale; GCA-F) was ahonormal, the individual was classified as typical AD. If MTA was ahonormal, the individual was classified as minimal atrophy -Founda subscale; GCA-F a abormal, the individual was classified as minimal atrophy AD. Subtypes: typical, limbic-predominant, bipocampal-sparing atrophy AD. Subtypes: typical, limbic-predominant, bipocampal-sparing atrophy AD. Subtypes: typical, limbic-predominant, bipocampal-sparing atrophy AD. Subtypes: typical, limbic-pred		Murray et al.)	regression instead of
 Normative data: A normative dataset was constructed from the normalized volume measures of healthy individuals stratified by age and sex. Abnormality Identification: Z-scores of hippocampal (Zn), fromtal (Zn), temporal (Zr) and parietal (Zp) volumes of individuals were calculated based on the normative data. The terretion of the original correction prominent atrophy in each ROL. <u>Classification</u>: If Z_H<-1 and all teast one of the three Z-scores (Z, Z, T, Zp)<-1, then individuals were classified as bippocampal droph only (limbic-predominant AD). If Z_H<-1 and all three Z-scores (Z, Z, T, Zp)<-1, then individuals were classified as bippocampal droph only (limbic-predominant AD). If Z_H<-1 and all three Z-scores (Z, Z, Z, Zp)<-1, then individuals were classified as both spare (minimal atrophy AD). Subtypes: typical, limbic-predominant, bippocampal-sparing and minimal atrophy AD Ferreira et al. (6) Covariate Adjustment: none Measure: visual ratings (sMRI) ROJs: hippocampus, parabippocampal gyrus, entorhinal cortex, surrounding cerebrospinal fluid spaces (for medial temporat atrophy: FA): central sulcus, the frontial boundaries for global corticat atrophy – frontal subscale; GCA-F) Method: Abnormality Identification: For MTA, the cut-off of ≥1.5, 15, 5, 2, 25.2 determined abnormality for the respective age group. Classification: If MTA together with PA and/or GCA-F were abnormal, the individual was classified as thiphocampal-sparing, minimal atrophy AD. Poulakis et al. (8) Covariate Adjustment: intracranial volume Subtypes: typical, limbic-predominant, hippocampal-sparing, minimal atrophy AD. Subtypes: typical, limbic-predominant, hippocampal-sparing, minimal atrophy AD. Subtypes: typical, limbic-predominant, hippocampal-sparing, minimal atrophy AD. Subtypes: typical, limbic-predominan			using a normative
 2. <u>Ahnormality Identification</u>: Z-scores of hippocampal (Z₄), frontal (Z₄), temporal (Z₇) and partetal (Z₇) volumes of individuals were calculated based on the normative data. The cut-off value of Z-scores -1.0 determined the presence of prominent atrophy in each ROI. 3. <u>Classification</u>: If Z₄<-1 and at least one of the three Z-scores (Z₇, Z₇, Z₇)>-1, then individuals were classified as both anormal (typical AD). If Z₄<-1 and all three Z-scores (Z₇, Z₇, Z₇)>-1, then individuals were classified as a both spared (minimal atrophy AD). If Z₄<-1 and all three Z-scores (Z₇, Z₇, Z₇)>-1, then individuals were classified as cortical atrophy only (hippocampal-sparing AD). If Z₄<-1 and all three Z-scores (Z₇, Z₇, Z₇)>-1, then individuals were classified as both spared (minimal atrophy AD). Subtypes: typical, limbic-predominant, hippocampal-sparing, and minimal atrophy AD Subtypes: typical, limbic-predominant, bippocampal-sparing, arrophy: MTA); posterior cingulate sulucy, precueues, surrounding cerebrospinal fluid spaces (for medial tempora atrophy). (MTA); posterior cingulate sulucy, precueues, surrounding cerebrospinal fluid spaces (for medial tempora atrophy) - frontal subscale; GCA-F) Method: <u>Abnormality Identification</u>: For MTA, the cut-off o ≥1.5, ≥1.5, ≥2, ≥2.5 determined abnormality for the respective age groups 45-64, 65-74, 7-5, 84, and 85-94 years. For PA and GCA-F, ≥1 determined abnormality irrespective of the age group. <u>Classification</u>: If MTA together with PA and/or GCA-F were abnormal, the individual was classified as hippocampal-sparing AD. If all of MTA, PA and GCA-F were normal, the individual was classified as minimal atrophy AD. Poulakis et al. (8) Covariate Adjustment: intracranial volume Same as in the original anyloid y according a suport of the respective age group. <u>Abnormality </u>		1. <u>Normative data:</u> A normative dataset was constructed from the normalized volume measures of healthy individuals,	systematic analysis of methodological variations, we also
S. Classification: If $Z_{1r} < 1$ and a least one of the three Z-scores (Z_r, Z_r, Z_p)<-1, then individuals were classified as bippocampal atrophy only (limbic-predominant AD). If $Z_{2r} > 1$ and all three Z-scores (Z_r, Z_r, Z_p)<-1, then individuals were classified as cortical atrophy only (lippocampal-sparing AD). If $Z_{2r} > 1$ and all three Z-scores (Z_r, Z_r, Z_p)>-1, then individuals were classified as both spared (minimal atrophy AD).If $Z_{2r} > 1$ and all three Z-scores (Z_r, Z_r, Z_p)>-1, then individuals were classified as both spared (minimal atrophy AD).If $Z_{2r} > 1$ and all three Z-scores 		frontal (Z_F), temporal (Z_T) and parietal (Z_P) volumes of individuals were calculated based on the normative data. The cut-off value of Z-score<-1.0 determined the presence of	of correcting for intracranial volume only, thus aligning with the original correction by Byun et al. We based
Measure: visual ratings (sMRI)algorithm. For the sMRI cohort, the visual ratiophy; MTA); posterior cingulate sulcus, precuneus, parieto-occipital sulcus, parietal cortex (anatomical boundaries for posterior atrophy; PA); central sulcus, the frontal bound atrophy – frontal subscale; GCA-F)algorithm. For the sMRI- tauPET cohort, the visual ratings were provided by a expert automatically generated with AVRA (7). We applied subtyping on 		$(Z_F, Z_T, Z_P) <-1$, then individuals were classified as both abnormal (typical AD). If $Z_H <-1$ and all three Z-scores (Z_F, Z_T , Z_P) \geq -1, then individuals were classified as hippocampal atrophy only (limbic-predominant AD). If $Z_H \geq -1$ and at least one of the three Z-scores (Z_F, Z_T, Z_P)<-1, then individuals were classified as cortical atrophy only (hippocampal-sparing AD). If $Z_H \geq -1$ and all three Z-scores (Z_F, Z_T, Z_P) \geq -1, then individuals were classified as both spared (minimal atrophy AD). <i>Subtypes:</i> typical, limbic-predominant, hippocampal-sparing,	normative group of amyloid-negative healthy controls, while Byun et al. did not perform any stratification based on amyloid status. Also, we applied subtyping on amyloid-positive AD patients, while Byun et al. did not perform any stratification based on
Measure: visual ratings (sMRI)cohort, the visual ratings were provided by a expert neuroradiologist, whereas for the sMRI- atrophy; MTA); posterior cingulate sulcus, precuneus, parieto-occipital sulcus, parietal cortex (anatomical boundaries for posterior atrophy; PA); central sulcus, the frontal bound- fissure of Sylvius (anatomical boundaries for global cortical atrophy – frontal subscale; GCA-F)cohort, the visual ratings were provided by a expert neuroradiologist, whereas for the sMRI- tauPET cohort, the visual ratings were automatically generated with AVRA (7). We applied subtyping on amyloid-positive AD patients, while Ferreira et al. did not perform any stratification based on amyloid status2. Classification: group.If MTA together with PA and/or GCA-F were abnormal, the individual was classified as limbic-predominant AD. If MTA was normal but PA and/or GCA-F are abnormal, the individual was classified as hippocampal-sparing AD. If all of MTA, PA and GCA-F were normal, the individual was classified as minimal atrophy AD.Same as in the originalPoulakis et al. (8)Covariate Adjustment: intracranial volumeSame as in the original	Ferreira et al. (6)	Covariate Adjustment: none	Same as in the original
 1. <u>Abnormality Identification:</u> For MTA, the cut-off of ≥1.5, ≥1.5, ≥2, ≥2.5 determined abnormality for the respective age groups 45–64, 65–74, 75–84, and 85–94 years. For PA and GCA-F, ≥1 determined abnormality irrespective of the age group. 2. <u>Classification:</u> If MTA together with PA and/or GCA-F were abnormal, the individual was classified as typical AD. If MTA was abnormal with PA and GCA-F being normal, the individual was classified as limbic-predominant AD. If MTA was normal but PA and/or GCA-F are abnormal, the individual was classified as hippocampal-sparing AD. If all of MTA, PA and GCA-F were normal, the individual was classified as minimal atrophy AD. Poulakis et al. (8) <i>Covariate Adjustment:</i> intracranial volume 		ROIs: hippocampus, parahippocampal gyrus, entorhinal cortex, surrounding cerebrospinal fluid spaces (for medial temporal atrophy; MTA); posterior cingulate sulcus, precuneus, parieto-occipital sulcus, parietal cortex (anatomical boundaries for posterior atrophy; PA); central sulcus, the frontal bone, fissure of Sylvius (anatomical boundaries for global cortical atrophy – frontal subscale; GCA-F)	ratings were provided by a expert neuroradiologist, whereas for the sMRI- tauPET cohort, the visual ratings were automatically generated with AVRA (7). We applied subtyping on
abnormal, the individual was classified as typical AD. If MTA was abnormal with PA and GCA-F being normal, the individual was classified as limbic-predominant AD. If MTA was normal but PA and/or GCA-F are abnormal, the individual was classified as hippocampal-sparing AD. If all of MTA, PA and GCA-F were normal, the individual was classified as minimal atrophy AD.Subtypes:typical, limbic-predominant, hippocampal-sparing, minimal atrophy ADPoulakis et al. (8)Covariate Adjustment: intracranial volumeSame as in the original		$\geq 1.5, \geq 2.5$ determined abnormality for the respective age groups 45–64, 65–74, 75–84, and 85–94 years. For PA and GCA-F, ≥ 1 determined abnormality irrespective of the age	patients, while Ferreira et al. did not perform any stratification based
minimal atrophy AD Poulakis et al. (8) Covariate Adjustment: intracranial volume Same as in the original		abnormal, the individual was classified as typical AD. If MTA was abnormal with PA and GCA-F being normal, the individual was classified as limbic-predominant AD. If MTA was normal but PA and/or GCA-F are abnormal, the individual was classified as hippocampal-sparing AD. If all of MTA, PA and GCA-F were normal, the individual was classified as minimal	
Measure: cortical/subcortical volumes (sMRI) comparability across	Poulakis et al. (8)	·	Same as in the original algorithm. For better comparability across subtyping methods, we


 <i>ROIs:</i> 148 cortical and 7 subcortical ROIs <i>Method:</i> <u>Clustering:</u> Random forest algorithm was applied to all volume measures to extract a similarity matrix. A lower dimensional representation was obtained using multidimensional scaling. Then, an agglomerative hierarchical clustering algorithm with average linkage was applied. <u>Classification:</u> Five clusters were identified based on the average Hopkins statistic. <i>Subtypes:</i> Diffuse1(=typical AD), diffuse2 (=typical AD), limbic-predominant, hippocampal-sparing, and minimal atrophy AD 	combined the two typical AD subtypes (diffuse 1 and 2) into a single subtype of typical AD. We applied subtyping on amyloid- positive AD patients, while Poulakis et al. did not perform any stratification based on amyloid status
---	---

Key: PET=positron emission tomography; sMRI=structural magnetic resonance imaging; ROIs=regions of interest; NFT= neurofibrillary tangle; CA1=cornu Ammonis subfield of hippocampus; SUVR=standardized uptake value ratio; AD=Alzheimer's disease.

Figure S1. Individual-level agreement for (a) sMRI cohort and (b) sMRI-tauPET cohort with ADNI RIDs

(a)

Key: PET=positron emission tomography; sMRI=structural magnetic resonance imaging; ADNI= Alzheimer's Disease Neuroimaging Initiative; RID=roster identifier for individuals; AD=Alzheimer's disease; LP=limbic-predominant; HS=hippocampal-sparing.

REFERENCES

- 1. Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW. Neuropathologically defined subtypes of Alzheimer's disease with distinct clinical characteristics: a retrospective study. Lancet Neurol. 2011;10(9):785–96.
- Charil A, Shcherbinin S, Southekal S, Devous MD, Mintun M, Murray ME, et al. Tau Subtypes of Alzheimer's Disease Determined in vivo Using Flortaucipir PET Imaging. J Alzheimer's Dis. 2019;(Preprint):1–12.
- 3. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31(3):968–80.
- 4. Risacher SL, Anderson WH, Charil A, Castelluccio PF, Shcherbinin S, Saykin AJ, et al. Alzheimer disease brain atrophy subtypes are associated with cognition and rate of decline. Neurology. 2017;89(21):2176–86.
- 5. Byun MS, Kim SE, Park J, Yi D, Choe YM, Sohn BK, et al. Heterogeneity of regional brain atrophy patterns associated with distinct progression rates in Alzheimer's disease. PLoS One. 2015;10(11):e0142756.
- 6. Ferreira D, Verhagen C, Hernández-Cabrera JA, Cavallin L, Guo C-J, Ekman U, et al. Distinct subtypes of Alzheimer's disease based on patterns of brain atrophy: longitudinal trajectories and clinical applications. Sci Rep. 2017;7:46263.
- Mårtensson G, Ferreira D, Cavallin L, Muehlboeck J-S, Wahlund L-O, Wang C, et al. AVRA: Automatic visual ratings of atrophy from MRI images using recurrent convolutional neural networks. NeuroImage Clin. 2019;23:101872.
- 8. Poulakis K, Pereira JB, Mecocci P, Vellas B, Tsolaki M, Kłoszewska I, et al. Heterogeneous patterns of brain atrophy in Alzheimer's disease. Neurobiol Aging. 2018;65:98–108.