
Supporting information 1

Appendix A 2

Model Selection 3

Starting with a basic, endemic-only model (including a population offset and linear 4

trend in time), potential extensions of the three core components were added in turn 5

and measures of fit and predictive power were calculated. The addition which yielded 6

the best improvement in the RPS of OSA predictions, subject to calibration (p not 7

less than 0.1 for test of calibration based on RPS), was selected and then all remaining 8

options tested again. This process was repeated until no further extension of the 9

model made a significant (p <0.001) improvement to predictive power (as determined 10

by a permutation test on the RPS). This stringent criterium was employed in order to 11

prioritise simplicity over complexity. If at any point an individual model parameter 12

lost significance, the element associated with this parameter was removed in 13

subsequent models. 14

Empirical Coverage Probabilities 15

Again using a one-step-ahead approach, the 25th and 75th quantiles of the predicted 16

distribution were calculated and a score of 0 or 1 assigned if the observed value fell 17

inside or outside this quantile range respectively. This binary score was assigned for 18

each block and each month in the test set, such that we could subsequently calculate a 19

proportion of prediction intervals which did not capture the true count. Thus, the 20

overall score, C, is given by 21

C =
1

nint

∑
i,t

1[yit ≤ qi,t,0.25|yit ≥ qi,t,0.75] (1)

where yit is the observed count for block i at month t, ni and nt the total number 22

of blocks and months respectively, and qi,t,p the pth quantile of the predicted 23

distribution. We also investigated such a score using 10th and 90th quantiles, to 24
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ascertain whether these could be used as approximate lower and upper bounds for case 25

counts. 26

Appendix B 27

Preliminary analyses 28

Dispersion 29

District-specific dispersion parameters were investigated, but ultimately not 30

considered a viable option to be included in the model. Four districts in particular 31

(Aurangabad, Banka, Jehanabad and Nawada) demonstrate extended periods of zero 32

incidence with occasional sporadic cases or large spikes, which lead to very large 33

dispersion estimates for these districts and therefore unrealistically high predictions. 34

See Fig. S1 for an illustration of these patterns. Due to the neighbourhood effect, 35

these high predictions in turn influence the predictions of any bordering blocks. 36

Changes in detection effort could go some way to explaining these unusual patterns, 37

however it is also likely that such patterns will become more common as elimination is 38

approached. This suggests that an alternative modelling strategy will become 39

necessary as cases become more sparse in space and time. 40

Distributed temporal lags 41

By sequentially adding further distributed lags to the best-fitting single-lagged model, 42

neither a clear minimum nor an “elbow” in RPS was attained up to twelve months. 43

The weights assigned to each lag did not show a rapid “drop-off” as a result of a high 44

estimated decay parameter, and months substantially far back in time were still 45

assigned non-negligible weight. PIT histograms of predictions from these lagged 46

models are included in . We found that adding higher orders of distributed lags 47

consistently improved both predictive power and fit. This appears to contradict 48

analysis of individual block time series which suggested significant auto-correlation no 49

more than four months back in time. In the current form of “hhh4addon”, it is not 50

possible to specify a different temporal lag length within the AR and NE components 51

(for example, to incorporate neighbouring incidence from further back in time than 52

within-block). Therefore, the contribution of distributed lags to both components had 53

March 10, 2020 2/6page.6



to be considered and a balance had to be drawn. Comparing the PIT histograms of 54

solely auto-regressive models, the very highest counts are vastly underestimated for all 55

lag lengths. Since the highest values in each block often reflect sudden jumps they 56

cannot be captured by auto-regression; more information - potentially from the 57

surrounding area - is required to anticipate them. Models with no auto-regression but 58

which incorporate neighbouring incidence are better able to reach the highest counts 59

but in doing so over-estimate the moderate-to-high range. It was concluded that 60

beyond four months of lags the improvement in prediction was small enough to 61

discount, and much longer lags were difficult to justify epidemiologically. Therefore 62

only four months of lags were considered for the final model. 63

Supplementary Figures 64

Fig. S1 Districts with unusual incidence patterns resulting in inflated 65

dispersion estimates.

66

Fig. S2 Probability integral transform (PIT) histograms for models with 67

increasing orders of geometric lags from 1 to 12 months (left to right, top 68

to bottom) in the autoregressive component. The final model selection 69

process considered up to four lags.

70

March 10, 2020 3/6page.6



T
a
b

le
S

1
F

it
a
n

d
p

re
d

ic
ti

o
n

m
e
tr

ic
s

fo
r

se
le

c
te

d
m

o
d

e
l

a
t

e
a
ch

st
a
g
e
.

T
h

e
re

p
o
rt

e
d

A
IC

is
fo

r
th

e
fi

t
to

tr
a
in

in
g

d
a
ta

o
n
ly

,
7
1

a
n

d
R

P
S

is
o
f

p
re

d
ic

ti
o
n

s
m

a
d

e
w

it
h

o
u

t
u

p
d

a
ti

n
g

th
is

fi
t

(i
.e

.
fi

x
e
d

in
st

e
a
d

o
f

ro
ll

in
g
).

C
2
5
7
5

a
n

d
C

1
0
9
0

re
fe

r
to

th
e

c
o
v
e
ra

g
e

7
2

o
f

5
0
%

a
n

d
8
0
%

q
u

a
n
ti

le
in

te
rv

a
ls

,
re

sp
e
c
ti

v
e
ly

,
a
lo

n
g
si

d
e

th
e

a
v
e
ra

g
e

in
te

rv
a
l

w
id

th
in

c
a
se

s.
M

o
d

e
l

n
o
.

4
2

is
th

e
fi

n
a
l

m
o
d

e
l.

7
3

S
t
a
g
e

M
o
d
e
l

N
o
.

E
N

D
A

R
N

E
D

is
p

e
r
s
io

n
N

o
.

p
a
r
a
m

e
t
e
r
s

A
I
C

R
P

S
C

a
li
b
r
a
t
io

n

(
p
-
v
a
lu

e
)

C
1
0
9
0

A
v
g
.

w
id

t
h

0
1

o
ff
s
e
t

+
1

+
t

1
3

6
5
4
1
2

0
.6

5
7

<
0
.0

0
0
1

0
.0

9
5

2
.2

4
3

1
2

o
ff
s
e
t

+
1

+
t

+
s
e
a
s
(
∼

1
,
S
=

1
)

1
5

6
5
2
2
7

0
.6

5
4

<
0
.0

0
0
1

0
.0

9
0

2
.3

3
0

1
3

o
ff
s
e
t

+
1

1
2

6
5
8
1
1

0
.6

9
8

<
0
.0

0
0
1

0
.0

4
4

4
.1

5
8

1
4

o
ff
s
e
t

+
1

+
t

+
lo

g
p
o
p
d
e
n
s

1
4

6
5
7
0
8

0
.6

6
2

<
0
.0

0
0
1

0
.0

9
4

2
.1

8
0

1
5

o
ff
s
e
t

+
1

+
t

A
R
(
1
)

1
4

5
7
1
0
0

0
.4

9
5

0
.1

0
9

0
.0

6
0

2
.3

8
6

1
6

o
ff

s
e
t

+
1

+
t

A
R

(
1
)

+
s
e
a
s
(
∼

1
,

S
=

1
)

1
6

5
7
0
5
8

0
.4

9
3

0
.1

1
5

0
.0

5
8

2
.3

8
8

1
7

o
ff
s
e
t

+
1

+
t

A
R
(
1
)

+
s
e
a
s
(
∼

1
+

t
,
S
=

1
)

1
7

5
7
0
3
1

0
.4

9
6

<
0
.0

0
0
1

0
.0

6
4

2
.1

7
1

1
8

o
ff
s
e
t

+
1

+
t

N
E
(
2
)

1
5

5
6
7
5
5

0
.5

1
6

0
.0

0
3

0
.0

5
6

2
.3

0
4

1
9

o
ff
s
e
t

+
1

+
t

N
E
(
2
)

+
lo

g
p
o
p
d
e
n
s

1
5

5
6
7
6
3

0
.5

1
6

0
.0

0
2

0
.0

5
6

2
.3

1
3

1
1
0

o
ff
s
e
t

+
1

+
t

N
E
(
2
)

+
s
e
a
s
(
∼

1
,
S

=
1
)

1
7

5
6
6
8
5

0
.5

1
5

0
.0

0
1

0
.0

5
4

2
.3

0
8

1
1
1

o
ff
s
e
t

+
1

+
t

N
E
(
2
)

+
s
e
a
s
(
∼

1
+

t
,
S

=
1
)

1
8

5
6
6
8
0

0
.5

1
6

0
.2

0
3

0
.0

5
7

2
.2

0
1

1
1
2

o
ff
s
e
t

+
1

+
t

S
t
a
t
e

4
6
5
3
1
0

0
.6

5
9

<
0
.0

0
0
1

0
.0

9
8

2
.1

4
5

2
1
3

o
ff
s
e
t

+
1

+
s
e
a
s
(
∼

1
,
S
=

1
)

A
R
(
1
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

1
7

5
7
0
2
4

0
.5

0
2

<
0
.0

0
0
1

0
.0

4
8

2
.6

2
7

2
1
4

o
ff
s
e
t

+
1

A
R
(
1
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

1
5

5
7
1
0
1

0
.5

0
2

<
0
.0

0
0
1

0
.0

4
9

2
.6

1
2

2
1
5

o
ff
s
e
t

+
1

+
t

+
lo

g
p
o
p
d
e
n
s

A
R
(
1
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

1
6

5
7
1
2
8

0
.4

9
9

<
0
.0

0
0
1

0
.0

5
5

2
.4

9
6

2
1
6

o
ff
s
e
t

+
1

+
t

A
R
(
1
)

+
s
e
a
s
(
∼

1
+

t
,
S
=

1
)

1
7

5
7
0
3
1

0
.4

9
6

<
0
.0

0
0
1

0
.0

6
4

2
.1

7
1

2
1
7

o
ff
s
e
t

+
1

+
t

A
R
(
1
)

+
s
e
a
s
(
∼

1
+

t
,
S
=

2
)

1
9

5
6
9
9
6

0
.4

9
6

<
0
.0

0
0
1

0
.0

6
4

2
.1

7
6

2
1
8

o
ff
s
e
t

+
1

+
t

A
R
(
1
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
2
)

1
8

5
3
3
6
2

0
.4

5
8

0
.2

1
0

0
.0

5
5

2
.1

0
5

2
1
9

o
ff
s
e
t

+
1

+
t

A
R
(
1
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
2
)

+
s
e
a
s
(
∼

1
,
S

=
1
)

1
1
0

5
3
3
0
0

0
.4

5
7

0
.2

9
4

0
.0

5
3

2
.1

0
1

2
2
0

o
ff
s
e
t

+
1

+
t

A
R
(
1
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
2
)

+
s
e
a
s
(
∼

1
+

t
,
S

=
1
)

1
1
1

5
3
3
0
1

0
.4

5
8

0
.1

2
5

0
.0

5
3

2
.1

2
2

2
2
1

o
ff
s
e
t

+
1

+
t

A
R
(
1
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
2
)

+
lo

g
p
o
p
d
e
n
s

1
8

5
3
3
9
8

0
.4

5
8

0
.1

4
4

0
.0

5
4

2
.1

1
1

2
2
2

o
ff
s
e
t

+
1

+
t

A
R
(
1
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

S
t
a
t
e

7
5
7
0
5
9

0
.4

9
3

0
.1

2
3

0
.0

5
8

2
.3

8
9

2
2
3

o
ff

s
e
t

+
1

+
t

A
R

(
2
)

+
s
e
a
s
(
∼

1
,

S
=

1
)

1
6

5
3
8
3
3

0
.4

5
5

0
.1

8
9

0
.0

5
3

2
.2

3
0

2
2
4

o
ff
s
e
t

+
1

+
t

A
R
(
3
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

1
6

5
2
2
7
9

0
.4

3
9

0
.0

0
5

0
.0

6
1

2
.0

1
7

2
2
5

o
ff
s
e
t

+
1

+
t

A
R
(
4
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

1
6

5
1
3
4
2

0
.4

2
8

<
0
.0

0
0
1

0
.0

6
4

1
.8

7
7

3
2
6

o
ff
s
e
t

+
1

+
s
e
a
s
(
∼

1
,
S
=

1
)

A
R
(
2
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

1
7

5
3
8
0
6

0
.4

5
7

<
0
.0

0
0
1

0
.0

4
3

2
.3

9
5

3
2
7

o
ff
s
e
t

+
1

A
R
(
2
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

1
5

5
3
8
4
4

0
.4

5
8

<
0
.0

0
0
1

0
.0

4
7

2
.3

4
0

3
2
8

o
ff
s
e
t

+
1

+
t

+
lo

g
p
o
p
d
e
n
s

A
R
(
2
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

1
6

5
3
8
3
5

0
.4

5
6

<
0
.0

0
0
1

0
.0

4
2

2
.4

0
4

3
2
9

o
ff
s
e
t

+
1

+
t

A
R
(
2
)

+
s
e
a
s
(
∼

1
+

t
,
S
=

1
)

1
7

5
3
8
1
5

0
.4

5
5

0
.0

0
2

0
.0

5
6

2
.0

8
7

3
3
0

o
ff
s
e
t

+
1

+
t

A
R
(
2
)

+
s
e
a
s
(
∼

1
+

t
,
S
=

2
)

1
9

5
3
6
9
2

0
.4

5
5

0
.0

0
1

0
.0

5
7

2
.0

7
9

March 10, 2020 4/6page.6



S
t
a
g
e

M
o
d
e
l

N
o
.

E
N

D
A

R
N

E
D

is
p

e
r
s
io

n
N

o
.

p
a
r
a
m

e
t
e
r
s

A
I
C

R
P

S
C

a
li
b
r
a
t
io

n

(
p
-
v
a
lu

e
)

C
1
0
9
0

A
v
g
.

w
id

t
h

3
3
1

o
ff
s
e
t

+
1

+
t

A
R
(
3
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

1
6

5
2
2
7
9

0
.4

3
9

0
.0

0
5

0
.0

6
1

2
.0

1
7

3
3
2

o
ff
s
e
t

+
1

+
t

A
R
(
2
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
1
)

1
7

5
1
7
4
9

0
.4

3
7

0
.1

8
1

0
.0

5
4

1
.9

7
4

3
3
3

o
ff

s
e
t

+
1

+
t

A
R

(
2
)

+
s
e
a
s
(
∼

1
,

S
=

1
)

N
E

(
1
)

+
s
e
a
s
(
∼

1
,

S
=

1
)

1
9

5
1
6
7
5

0
.4

3
7

0
.1

2
2

0
.0

5
5

1
.9

6
6

3
3
4

o
ff
s
e
t

+
1

+
t

A
R
(
2
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
3
)

+
s
e
a
s
(
∼

1
+

t
,
S

=
1
)

1
1
1

5
1
5
4
3

0
.4

3
7

0
.6

5
6

0
.0

5
0

2
.0

2
9

3
3
5

o
ff
s
e
t

+
1

+
t

A
R
(
2
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

S
t
a
t
e

7
5
3
8
3
1

0
.4

5
5

0
.1

9
2

0
.0

5
3

2
.2

3
0

4
3
6

o
ff
s
e
t

+
1

+
s
e
a
s
(
∼

1
,
S
=

1
)

A
R
(
2
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
1
)

+
s
e
a
s
(
∼

1
,
S

=
1
)

1
1
0

5
1
7
0
1

0
.4

3
7

0
.0

8
5

0
.0

5
6

1
.9

6
1

4
3
7

o
ff
s
e
t

+
1

A
R
(
2
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
1
)

+
s
e
a
s
(
∼

1
,
S

=
1
)

1
8

5
1
6
7
3

0
.4

3
7

0
.1

9
4

0
.0

5
5

1
.9

6
9

4
3
8

o
ff
s
e
t

+
1

+
t

+
lo

g
p
o
p
d
e
n
s

A
R
(
2
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
1
)

+
s
e
a
s
(
∼

1
,
S

=
1
)

1
9

5
1
6
9
1

0
.4

3
7

0
.1

5
3

0
.0

5
6

1
.9

6
2

4
3
9

o
ff
s
e
t

+
1

+
t

A
R
(
2
)

+
t

N
E
(
1
)

+
s
e
a
s
(
∼

1
,
S

=
1
)

1
8

5
1
6
7
0

0
.4

3
9

0
.0

0
1

0
.0

5
9

1
.8

6
5

4
4
0

o
ff
s
e
t

+
1

+
t

A
R
(
2
)

+
s
e
a
s
(
∼

1
,
S
=

2
)

N
E
(
1
)

+
s
e
a
s
(
∼

1
,
S

=
1
)

1
1
1

5
1
5
4
5

0
.4

3
7

0
.1

1
5

0
.0

5
5

1
.9

7
3

4
4
1

o
ff
s
e
t

+
1

+
t

A
R
(
2
)

+
s
e
a
s
(
∼

1
+

t
,
S
=

2
)

N
E
(
1
)

+
s
e
a
s
(
∼

1
+

t
,
S

=
1
)

1
1
5

5
1
4
4
6

0
.4

4
1

0
.5

6
3

0
.0

5
4

1
.9

5
9

4
4
2

o
ff

s
e
t

+
1

A
R

(
4
)

+
s
e
a
s
(
∼

1
,

S
=

1
)

N
E

(
1
)

+
s
e
a
s
(
∼

1
,

S
=

1
)

1
8

5
0
3
2
3

0
.4

2
0

0
.3

4
6

0
.0

5
4

1
.8

7
2

4
4
3

o
ff
s
e
t

+
1

+
t

A
R
(
2
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
1
)

+
t

1
8

5
1
7
4
9

0
.4

3
7

0
.5

4
5

0
.0

5
3

2
.0

0
3

4
4
4

o
ff
s
e
t

+
1

+
t

A
R
(
2
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
1
)

+
s
e
a
s
(
∼

lo
g
p
o
p
d
e
n
s
,
S

=
1
)

1
9

5
1
7
8
0

0
.4

3
8

0
.2

0
2

0
.0

5
6

1
.9

7
5

4
4
5

o
ff
s
e
t

+
1

+
t

A
R
(
2
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
3
)

1
8

5
1
6
4
2

0
.4

3
7

0
.3

3
3

0
.0

5
3

1
.9

7
2

4
4
6

o
ff
s
e
t

+
1

+
t

A
R
(
2
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
1
)

+
s
e
a
s
(
∼

1
,
S

=
1
)

S
t
a
t
e

1
0

5
1
6
7
6

0
.4

3
7

0
.1

1
8

0
.0

5
5

1
.9

6
4

4
4
7

o
ff
s
e
t

+
1

+
t

A
R
(
2
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
1
)

+
s
e
a
s
(
∼

lo
g
p
o
p
d
e
n
s

+
t
,
S

=
1
)

S
t
a
t
e

1
1

5
1
7
8
2

0
.4

3
8

0
.3

1
4

0
.0

5
5

1
.9

8
8

5
4
8

o
ff
s
e
t

+
1

+
s
e
a
s
(
∼

1
,
S
=

1
)

A
R
(
4
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
1
)

+
s
e
a
s
(
∼

1
,
S

=
1
)

1
1
0

5
0
3
4
2

0
.4

2
0

0
.2

9
7

0
.0

5
5

1
.8

6
7

5
4
9

o
ff
s
e
t

+
1

A
R
(
4
)

+
s
e
a
s
(
∼

1
+

t
,
S
=

1
)

N
E
(
1
)

+
s
e
a
s
(
∼

1
+

t
,
S

=
1
)

1
1
0

5
0
2
9
6

0
.4

2
4

0
.6

1
4

0
.0

5
2

1
.8

6
4

5
5
0

o
ff
s
e
t

+
1

+
lo

g
p
o
p
d
e
n
s

A
R
(
4
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
1
)

+
s
e
a
s
(
∼

1
,
S

=
1
)

1
9

5
0
3
3
2

0
.4

2
0

0
.4

3
9

0
.0

5
4

1
.8

7
0

5
5
1

o
ff
s
e
t

+
1

A
R
(
4
)

+
t

N
E
(
1
)

+
s
e
a
s
(
∼

1
,
S

=
1
)

1
7

5
0
3
3
6

0
.4

2
4

0
.0

0
0

0
.0

6
0

1
.7

6
3

5
5
2

o
ff

s
e
t

+
1

A
R

(
4
)

+
s
e
a
s
(
∼

1
,

S
=

2
)

N
E

(
1
)

+
s
e
a
s
(
∼

1
)

1
1
0

5
0
1
6
4

0
.4

1
9

0
.1

9
4

0
.0

5
5

1
.8

6
8

5
5
3

o
ff
s
e
t

+
1

A
R
(
4
)

+
s
e
a
s
(
∼

1
+

t
,
S
=

1
)

N
E
(
1
)

+
s
e
a
s
(
∼

1
+

t
,
S

=
2
)

1
1
4

5
0
0
9
7

0
.4

2
3

0
.7

8
2

0
.0

5
2

1
.8

5
1

5
5
4

o
ff
s
e
t

+
1

A
R
(
4
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
1
)

+
s
e
a
s
(
∼

1
+

t
,
S

=
1
)

1
9

5
0
3
2
4

0
.4

2
0

0
.6

2
0

0
.0

5
2

1
.9

0
4

5
5
5

o
ff
s
e
t

+
1

A
R
(
4
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
1
)

+
s
e
a
s
(
∼

lo
g
p
o
p
d
e
n
s
,
S

=
1
)

1
8

5
0
4
0
1

0
.4

2
1

0
.4

2
5

0
.0

5
5

1
.8

7
3

5
5
6

o
ff
s
e
t

+
1

A
R
(
4
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
1
)

1
6

5
0
4
1
6

0
.4

2
0

0
.2

5
1

0
.0

5
4

1
.8

7
7

5
5
7

o
ff
s
e
t

+
1

A
R
(
4
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
1
)

+
s
e
a
s
(
∼

1
,
S

=
1
)

S
t
a
t
e

9
5
0
3
2
5

0
.4

2
0

0
.3

4
2

0
.0

5
4

1
.8

7
3

5
5
8

o
ff
s
e
t

+
1

A
R
(
4
)

+
s
e
a
s
(
∼

1
,
S
=

1
)

N
E
(
1
)

+
s
e
a
s
(
∼

lo
g
p
o
p
d
e
n
s

+
t
,
S

=
1
)

S
t
a
t
e

1
0

5
0
4
0
5

0
.4

2
1

0
.5

3
7

0
.0

5
5

1
.8

7
6

March 10, 2020 5/6page.6



Fig. S3 PIT histograms for the selected model at each stage. Model 42 is 74

the final model. Model 52 offered minor improvement in RPS with 75

additional complexity.

76

Fig. S4 Fitted seasonal waves in the auto-regressive (AR) and 77

neighbourhood (NE) model components. Both reflect the first-quarter 78

peak in reported cases but the magnitude of the waves differs, with the 79

contribution of the AR component varying more than that of the NE. 80

Fig. S5 Blocks with average RPS greater than 2.5 over the test period 81

(Jan 2017 - Dec 2018)

82
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