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Genome and exome sequencing data
The 2,284 genome sequencing (GS) samples were subjected to PCR-free DNA preparation and sequenced at the Broad Institute (Cambridge, MA, USA) using an Illumina HiSeq X Ten device (150-bp paired-end reads; mean coverage, 30×). The 2,500 exome sequencing (ES) samples were sequenced at Nestlé Institute of Health Sciences (Lausanne, Switzerland) using the Agilent SureSelect Human All Exon V5+UTRs Kit according to the manufacturer’s recommendations, with a mean target coverage of 67×. Sequenced reads were aligned to the GRCh37 human reference genome assembly.
Outlier samples were excluded based on high degree (>5%) of contamination, large proportion (>5%) of chimeric alignment, low call rate (<99%) for single nucleotide variants (SNVs), and mismatches between phenotypic and genotypic sex. Additional outlier samples (mean ± three standard deviations [SDs]) were excluded based on the numbers of variants, non-reference variants, and heterozygous variants, and the heterozygous/homozygous and transition/transversion ratios. In addition, extremely low-coverage samples (below the mean –3 SDs) and extreme values (mean ± 3 SDs) of multiallelic SNVs and inbreeding coefficient F were removed in ES quality control. After filtering and exclusion of duplicates, the final set contained 4,594 unique samples (GS, n = 2,240; ES, n = 2,354). As adjustment for relatedness, first-degree relatives (identity by descent > 0.4) were excluded using PLINK v1.9.1 Samples were excluded by choosing the minimal list of related individuals to break all kinship ties using the RELOUT5 tool from Allele (http://www.toomashaller.com/allele.html).
The Genome Analysis Toolkit’s2 variant quality score recalibration was used to filter variants with truth sensitivities of 99.8% for SNVs and 99.9% for indels. Variants with inbreeding coefficients < –0.3, quality by depth scores < 2 for SNVs and <3 for indels, call rates < 95%, and Hardy-Weinberg equilibrium P values < 1×10-6 were removed. Sequenced variants were annotated with Variant Effect Predictor3 version 87 (Gencode v19 on GRCh37.p13) and ANNOVAR.4

Variant detection and evaluation of variant pathogenicity
We used a custom pipeline to annotate and prioritize clinically important variants. This pipeline incorporates standard annotations, including variant effect, protein functional predictions, and conservation and allele frequencies, along with publicly available variant data. For estimation of the pathogenicity of likely pathogenic (LP) (and known pathogenic [KP]) variants, the following in silico prediction algorithms were considered: SIFT,5 PolyPhen-2, HumDiv, Hvar,6 CADD,7 PhyloP,8 MutationTaster2,9 MutationAssessor,10 PROVEAN,11 MetaSVM, and MetaLR.12 In this manner, we compiled a list of clinically actionable LP and KP BRCA1/2 variants. Potentially important variants were identified, and manually assessed.13 They were classified as pathogenic, likely pathogenic, of uncertain significance, likely benign, and benign.14 Selected candidate variants were confirmed by conventional PCR amplification and Sanger sequencing.
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