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Fig S1. Estimating the average reproductive number in a population. Two hypothetical outbreaks with a pathogen 
reproductive number (R) equal to 2 and a total of 15 infections. Black circles represent infections; blue circles represent 
infections who have not yet infected others, or whose descendents are outside the sampling frame. (A) Outbreak caused by a 
single introduction, resulting in $!"! = 0.933. (B) Outbreak caused by two separate introductions, resulting in $!"! = 0.867. 

 



 

 

Fig S2. Effects of R and G on the distribution of generations between cases. Distribution of the number of generations 
between infections averaged over 1000 simulated outbreaks with reproduction number R and number of generations of 
transmission G. Distributions are shown for three values of R (rows). Left column: distribution of generations between infections 
after 3 generations of transmission; middle column: distribution after ./(1000)/./($) generations of transmission (see 
Methods); right column: distribution after ./(1000)/./($) + 2 generations of transmission. 

  



 

 

Fig S3. Genetic distance distributions for different types of pathogens. (A) Distribution of genetic distances for linked 
(purple) and unlinked (yellow) infections for a hypothetical pathogen with mutation rate = 1 mutation/genome/generation and 
R=1.5. Inset: receiver operating characteristic (ROC) curve for all possible genetic distance cutoff values. Optimal threshold 
shown as green dot (ROC) and dashed vertical line (distribution). (B) Distribution of genetic distances for linked and unlinked 
cases for a hypothetical pathogen with mutation rate = 0.2 mutations/genome/generation and R=3. Inset: ROC curve for all 
possible genetic distance cutoff values for this pathogen. The optimal threshold is shown as in (A). 

 



 

 

Fig S4. Error of false discovery rate calculation by sensitivity and specificity. (A) Average false discovery from 10,000 
simulated outbreaks (proportion sampled = 0.75) binned by sensitivity and specificity (bin size = 0.02). Grey = no genetic 
distance thresholds in simulation produced this combination of sensitivity and specificity. (B) Zoom view of (A), with specificity 
ranging from 0.9-1 (bin size = 0.002). (C) Number of data points with sensitivity and specificity in the desired bins (i.e., number 
of data points used to calculate average error in panel (A). (D) Zoom view of (C), with specificity ranging from 0.9-1. 

 



 

 

Fig S5. Predicted versus observed sensitivity using mutation rate method. Theoretical versus simulated sensitivity for each 
genetic distance threshold in 10,000 simulations of varying mutation rate and reproductive number. White line: smoothed 
conditional mean; grey dashed line: y=x line. Increasing values of the sample size (M) are plotted in darker color. 

 



 

 

Fig S6. Predicted versus observed specificity using mutation rate method. Theoretical versus simulated specificity for each 
genetic distance threshold in 10,000 simulations of varying mutation rate and reproductive number. White line: smoothed 
conditional mean; grey dashed line: y=x line. Increasing values of the sample size (M) are plotted in darker color. 

 



 

 

Fig S7. Predicted versus observed false discovery rate using actual generation distribution. Theoretical versus simulated 
false discovery rate (FDR) for each genetic distance threshold in 10,000 simulations of varying mutation rate and reproductive 
number. Theoretical FDR is calculated using the actual distribution of generations between infections from the corresponding 
simulated outbreak. White line: smoothed conditional mean; grey dashed line: y=x line. Increasing values of the sample size (M) 
are plotted in darker color. 

 

  



 

Table S1. Error of false discovery rate calculation by sample size. 

 

⍴=0.10 M=0-50 M=50-100 M=100-150 M=150-200 All sample sizes N 

FDR=0.00-0.25 0.2613 0.2172 0.1755 0.1558 0.2135 2,269 

FDR=0.25-0.50 0.3557 0.2324 0.1736 0.1209 0.2751 6,138 

FDR=0.50-0.75 0.2645 0.1362 0.0981 0.0717 0.2057 11,975 

FDR=0.75-1.00 0.0236 0.0074 0.0048 0.0035 0.0155 240,978 

All FDR Values 0.044 0.0218 0.0149 0.0107 0.032 261,360 

N 140,845 65,386 35,754 19,375 261,360  

 

⍴=0.25 M=0-125 M=125-250 M=250-375 M=375-500 All sample sizes N 

FDR=0.00-0.25 0.1726 0.1219 0.0934 0.0742 0.1359 4,420 

FDR=0.25-0.50 0.2089 0.1006 0.0677 0.0521 0.1583 8,246 

FDR=0.50-0.75 0.1268 0.0551 0.0404 0.0308 0.0979 13,013 

FDR=0.75-1.00 0.0106 0.0031 0.002 0.0014 0.0069 241,560 

All FDR Values 0.026 0.0106 0.0069 0.005 0.0181 267,239 

N 145,662 64,720 37,176 19,681 267,239  

 

⍴=0.50 M=0-250 M=250-500 M=500-750 M=750-1000 All sample sizes N 

FDR=0.00-0.25 0.1049 0.06 0.0399 0.0314 0.0799 5,515 

FDR=0.25-0.50 0.1046 0.0442 0.0322 0.0236 0.079 8,605 

FDR=0.50-0.75 0.0616 0.0279 0.02 0.0149 0.0478 13,016 

FDR=0.75-1.00 0.0054 0.0017 0.001 0.0007 0.0035 241,764 

All FDR Values 0.0141 0.0054 0.0033 0.0022 0.0097 268,900 

N 148,403 64,381 35,787 20,329 268,900  

 

⍴=0.75 M=0-375 M=375-750 M=750-1125 M=1125-1500 All sample sizes N 

FDR=0.00-0.25 0.0506 0.0305 0.0213 0.018 0.0401 5,696 

FDR=0.25-0.50 0.0541 0.0246 0.0163 0.0137 0.0416 8,644 

FDR=0.50-0.75 0.0331 0.0147 0.0103 0.0085 0.0259 13,065 

FDR=0.75-1.00 0.003 0.0009 0.0005 0.0004 0.002 240,823 

All FDR Values 0.0075 0.0028 0.0017 0.0013 0.0052 268,228 

N 150,672 64,274 35,407 17,875 268,228  

 

 

  



 

Table S2. Bias and error of false discovery rate calculation using mutation rate method. 

 

Bias ⍴=0.10 ⍴=0.25 ⍴=0.50 ⍴=0.75 All ⍴ values N 

FDR=0.00-0.25 -0.1105 -0.0859 -0.0733 -0.0739 -0.0823 23,704 

FDR=0.25-0.50 -0.0926 -0.0683 -0.0631 -0.0674 -0.0715 35,511 

FDR=0.50-0.75 -0.0426 -0.0397 -0.0423 -0.0455 -0.0425 54,096 

FDR=0.75-1.00 -0.002 -0.002 -0.002 -0.0023 -0.0021 952,416 

All FDR Values -0.008 -0.0081 -0.0081 -0.0088 -0.0082 1,065,727 

N 261,360 267,239 268,900 268,228 1,065,727   

 

Error ⍴=0.10 ⍴=0.25 ⍴=0.50 ⍴=0.75 All ⍴ values N 

FDR=0.00-0.25 0.2551 0.1858 0.1462 0.1298 0.1678 23,704 

FDR=0.25-0.50 0.2934 0.2059 0.151 0.1343 0.1891 35,511 

FDR=0.50-0.75 0.2176 0.1395 0.1084 0.1018 0.1403 54,096 

FDR=0.75-1.00 0.0177 0.0107 0.0084 0.0078 0.0112 952,416 

All FDR Values 0.0383 0.0279 0.0221 0.0205 0.0271 1,065,727 

N 261,360 267,239 268,900 268,228 1,065,727     

  



 

Table S3. Error and of false discovery rate calculation using mutation rate method by sample size. 

 

⍴=0.10 M=0-50 M=50-100 M=100-150 M=150-200 All sample sizes N 

FDR=0.00-0.25 0.3264 0.2308 0.1735 0.1489 0.2551 3,670 

FDR=0.25-0.50 0.3627 0.2473 0.1812 0.1542 0.2934 7,085 

FDR=0.50-0.75 0.2674 0.1597 0.1221 0.1085 0.2176 12,728 

FDR=0.75-1.00 0.0257 0.01 0.0069 0.0061 0.0177 237,877 

All FDR Values 0.0509 0.0288 0.0186 0.0146 0.0383 261,360 

N 140,845 65,386 35,754 19,375 261,360  

 

⍴=0.25 M=0-125 M=125-250 M=250-375 M=375-500 All sample sizes N 

FDR=0.00-0.25 0.2356 0.1566 0.1079 0.0941 0.1858 5,859 

FDR=0.25-0.50 0.2509 0.1552 0.1127 0.0958 0.2059 9,231 

FDR=0.50-0.75 0.1619 0.1134 0.0846 0.0844 0.1395 13,727 

FDR=0.75-1.00 0.0144 0.0076 0.0052 0.0053 0.0107 238,422 

All FDR Values 0.0367 0.0216 0.0134 0.0115 0.0279 267,239 

N 145,662 64,720 37,176 19,681 267,239  

 

⍴=0.50 M=0-250 M=250-500 M=500-750 M=750-1000 All sample sizes N 

FDR=0.00-0.25 0.1858 0.1076 0.0783 0.0647 0.1462 6,901 

FDR=0.25-0.50 0.1756 0.1207 0.094 0.0849 0.151 9,522 

FDR=0.50-0.75 0.1194 0.096 0.0793 0.0799 0.1084 13,831 

FDR=0.75-1.00 0.0106 0.0066 0.0051 0.0048 0.0084 238,646 

All FDR Values 0.0283 0.0175 0.0119 0.0099 0.0221 268,900 

N 148,403 64,381 35,787 20,329 268,900  

 

⍴=0.75 M=0-375 M=375-750 M=750-1125 M=1125-1500 All sample sizes N 

FDR=0.00-0.25 0.1624 0.0966 0.0645 0.0472 0.1298 7,274 

FDR=0.25-0.50 0.1517 0.1158 0.0875 0.0762 0.1343 9,673 

FDR=0.50-0.75 0.1095 0.0957 0.0759 0.0752 0.1018 13,810 

FDR=0.75-1.00 0.0094 0.0066 0.005 0.0046 0.0078 237,471 

All FDR Values 0.0255 0.0169 0.0113 0.0092 0.0205 268,228 

N 150,672 64,274 35,407 17,875 268,228  

 

  



 

Table S4. Bias and error of false discovery rate using actual generation distribution. 

 

Bias ⍴=0.10 ⍴=0.25 ⍴=0.50 ⍴=0.75 All ⍴ values N 

FDR=0.00-0.25 0.0062 0.0146 0.013 0.0211 0.0151 15,868 

FDR=0.25-0.50 0.009 0.0135 0.0167 0.0167 0.0144 31,770 

FDR=0.50-0.75 0.0153 0.0157 0.0125 0.0132 0.0141 50,302 

FDR=0.75-1.00 0.0011 0.0011 0.001 0.0011 0.0011 967,787 

All FDR Values 0.002 0.0024 0.0023 0.0025 0.0023 1,065,727 

N 261,360 267,239 268,900 268,228 1,065,727  

 

Error ⍴=0.10 ⍴=0.25 ⍴=0.50 ⍴=0.75 All ⍴ values N 

FDR=0.00-0.25 0.2192 0.1494 0.1071 0.0792 0.1233 15,868 

FDR=0.25-0.50 0.2766 0.1711 0.1006 0.075 0.1448 31,770 

FDR=0.50-0.75 0.2131 0.1121 0.0694 0.0569 0.1104 50,302 

FDR=0.75-1.00 0.0168 0.0086 0.0059 0.005 0.0091 967,787 

All FDR Values 0.0331 0.0207 0.0138 0.0112 0.0196 1,065,727 

N 261,360 267,239 268,900 268,228 1,065,727  

 



Supplementary Text 1
Deriving probability of transmission given linkage

We begin by defining two matrices containing binary response variables. The first matrix Y contains the variable yij ,
which indicates that infection i and infection j are linked through a direct transmission event (i.e., i infected j or vice
versa). Matrix Y has dimensions N ◊ N , where N is the population (i.e., final outbreak) size. The second matrix
Z contains the variable zij , which indicates inferred linkage between infections i and j based on some phylogenetic
criteria. Matrix Z has dimensions M ◊ M , where M is the sample size and M µ N .

Our aim is to determine the quantity Pr(yij | zij), which is the probability that infection i is linked by transmission to
infection j (making i and j a true transmission pair), given that they have been linked by some phylogenetic criteria.
We start by making a number of assumptions that simplify the derivation, and we relax each of these assumptions in
turn.

A Single link, single true transmission, and perfect sensitivity

A.1 Assumptions

We make the following simplifying assumptions:

1. Each infection i is linked by transmission to only one other infection j in the population (N).

2. Each infection i is linked by the linkage criteria to only one other infection j in the sampled population (M).

3. The sensitivity of the linkage criteria is equal to 1 when both the infector and infectee have been sampled. If
infection i is truly linked by transmission to infection j and both infections are found in sample M , then yij = 1
by definition. Under this assumption of perfect sensitivity, zij = 1 as well.

A.2 Derivation of the probability of transmission given linkage

Under the assumptions above, we can show that:

Pr(yij | zij) = Pr(yij , zij)
Pr(zij) = Pr(yij , zij)

Pr(yij , zij) + Pr(¬yij , zij)

However, we must also account for the uncertainty of sampling the true transmission partner of i (the infection directly
linked to i by transmission, i.e., either its infector or infectee). We define define Si as the probability that the true
transmission partner of i has been sampled from the population N and apply the law of total probability accordingly:

= ⇠⇠⇠⇠⇠⇠⇠⇠: 1
Pr(yij , zij | Si) Pr(Si) +

⇠⇠⇠⇠⇠⇠⇠⇠⇠: 0
Pr(yij , zij | ¬Si) Pr(¬Si)S

WU⇠⇠⇠⇠⇠⇠⇠⇠: 1
Pr(yij , zij | Si) Pr(Si) +

⇠⇠⇠⇠⇠⇠⇠⇠⇠: 0
Pr(yij , zij | ¬Si) Pr(¬Si) +

⇠⇠⇠⇠⇠⇠⇠⇠⇠: 0
Pr(¬yij , zij | Si) Pr(Si) + Pr(¬yij , zij | ¬Si) Pr(¬Si)

T

XV

= Pr(Si)
Pr(Si) + Pr(¬yij , zij | ¬Si) Pr(¬Si)
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We know that Pr(Si) is equal to the sampling fraction
!M

N

"
, which we define as fl:

= fl

fl + Pr(¬yij , zij | ¬Si)(1 ≠ fl)

The term Pr(¬yij , zij | ¬Si) is the probability that i is linked to j when infection i is not the true transmission partner
of j, given that the true partner of i is not in the sample M . Given our assumption that each infection is linked to
exactly one other infection by the phylogenetic criteria, the probability of this (incorrect) link between infections i and
j is equal the probability that the remaining M ≠ 1 other possible (incorrect) links do not occur, which can be written
as (1 ≠ ‰M≠1), where ‰ is the specificity of the linkage criteria:

= fl

fl + (1 ≠ ‰M≠1)(1 ≠ fl)

Therefore, the probability of transmission given linkage assuming perfect sensitivity, single transmission, and
single linkage is:

Pr(yij | zij) = fl

fl + (1 ≠ ‰M≠1)(1 ≠ fl) (1)

The probability spaces in Equation 1 above can also be represented by the conceptual diagram below:

A.3 Calculating the expected number of pairs in the sample

Given the number of pairs identified from the linkage criteria, the expected number of those pairs that represent true
transmission pairs is:

E[number of true pairs] = E[Number of pairs observed] ◊ Pr(a pair is true).

We have defined fl as the probability of selecting any individual from the population N . Therefore, if we assume a large
population size, the probability of sampling both infection i and its true transmission partner is equal to fl2. Under

2



our first assumption—that i is linked by transmission to only one other infection j—the total number of pairs in the
population is equal to N

2 . We also know that fl = M
N , so the total number of true transmission pairs in the sample is:

E[number of true pairs] = fl2 ◊ N

2 = fl2 ◊ 1
2

M

fl
= M

2 fl (2)

Rearranging and substituting Equation 1 for Pr(a pair is true):

E[number of pairs observed] = E[number of true pairs]
Pr(a pair is true)

=
M
2 fl

fl/
#
fl + (1 ≠ ‰M≠1)(1 ≠ fl)

$

= M

2
#
fl + (1 ≠ ‰M≠1)(1 ≠ fl)

$

Therefore, the expected number of pairs observed assuming perfect sensitivity, single linkage, and single trans-
mission is:

E[number of pairs observed] = M

2
#
fl + (1 ≠ ‰M≠1)(1 ≠ fl)

$
(3)

Under our simplifying assumptions, Equation 3 reveals two important principles:

1. The quantity E[number of pairs observed] increases more rapidly than E[number of true pairs] as M increases.
Therefore, the false discovery rate increases as M increases, all else being equal.

2. Both E[number of pairs observed] and Pr(yij | zij) are highly dependent on the value of ‰, the specificity of the
linkage criteria.
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B Single link and single true transmission

B.1 Assumptions

In this section, we preserve the first two assumptions from the prior section and relax our assumption of perfect
sensitivity. Our remaining assumptions are:

1. Each infection i is linked by transmission to only one other infection j in the population (N).

2. Each infection i is linked by the linkage criteria to only one other infection j in the sampled population (M).

B.2 Derivation of the probability of transmission given linkage

When perfect sensitivity is relaxed, we must account for both the uncertainty that the true transmission partner of i is
in sample M and the uncertainty that we correctly identify this pairing when both infections are sampled. Thus, we
rewrite Equation 1 with additional terms to account for the increased number of potential outcomes.

Pr(yij | zij) = Pr(yij , zij)
Pr(zij) = Pr(yij , zij)

Pr(yij , zij) + Pr(¬yij , zij)

= Pr(yij , zij | Si) Pr(Si) +
⇠⇠⇠⇠⇠⇠⇠⇠⇠: 0
Pr(yij , zij | ¬Si) Pr(¬Si)S

U Pr(yij , zij | Si) Pr(Si) +
⇠⇠⇠⇠⇠⇠⇠⇠⇠: 0
Pr(yij , zij | ¬Si) Pr(¬Si) +

Pr(¬yij , zij | Si) Pr(Si) + Pr(¬yij , zij | ¬Si) Pr(¬Si)

T

V

= Pr(yij , zij | Si) Pr(Si)
Pr(yij , zij | Si) Pr(Si) + Pr(¬yij , zij | Si) Pr(Si) + Pr(¬yij , zij | ¬Si) Pr(¬Si)

The specificity of the linkage criteria (defined here as ÷) is the probability that a link is correctly identified between
infection i and its true transmission partner when both are in the sample, or Pr(yij , zij | Si). Substituting this and the
previously-defined Pr(Si) = fl, we get:

= ÷fl

÷fl + Pr(¬yij , zij | Si)fl + Pr(¬yij , zij | ¬Si)(1 ≠ fl).

We know that Pr(¬yij , zij | Si) is the probability that the true partner of infection i is in the sample M , but that i is
incorrectly linked to j, an infection that is not its true transmission partner. This is expressed as the probability of i not
being linked to its true (sampled) transmission partner (1≠÷) or any of the M ≠2 other sampled infections (1≠‰M≠2).
In this derivation, we again assume that each infection is linked to exactly one other, so avoiding linkage with all other
sampled infections implies that i is linked to the remaining infection j (in this case, not its true transmission partner).
If the true partner of i is not in the sample

!
Pr(¬yij , zij | ¬Si)

"
, the probability of linking i to one other sampled

infection that is not its true partner is simply 1 ≠ ‰M≠1, as previously defined.
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Therefore, the probability of transmission given linkage assuming single transmission and single linkage is:

Pr(yij | zij) = ÷fl

÷fl + (1 ≠ ‰M≠2)(1 ≠ ÷)fl + (1 ≠ ‰M≠1)(1 ≠ fl) (4)

The probability spaces in Equation 4 above can also be represented by the conceptual diagram below:

This derivation makes the implicit assumption that sensitivity is independent of both sample size and specificity
(M ‹ ÷ ‹ ‰). This is unlikely to be true in a real transmission scenario where infection i is closely related to multiple
other infections, but allows us to approximate the probability that an identified transmission link is true given our other
assumptions.

B.3 Calculating the expected number of pairs in the sample

We now re-write Equation 2 with the sensitivity assumption relaxed:

E[number of true pairs] = ÷fl2 ◊ N

2 = ÷fl2 ◊ 1
2

M

fl
= M

2 ÷fl (5)

Where the probability that an infection and its transmission partner are both in the sample is still fl2, but we must now
also include the probability of that pair being correctly identified by the linkage criteria, ÷. We can again calculate the
expected number of pairs observed, this time incorporating the sensitivity:
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E[number of pairs observed] = E[number of true pairs]
Pr(a pair is true)

=
M
2 ÷fl

÷fl/
#
÷fl + fl(1 ≠ ÷)(1 ≠ ‰M≠2) + (1 ≠ fl)(1 ≠ ‰M≠1)

$

= M

2
#
÷fl + fl(1 ≠ ÷)(1 ≠ ‰M≠2) + (1 ≠ fl)(1 ≠ ‰M≠1)

$

Therefore, the expected number of pairs observed, assuming single linkage and single transmission is:

E[number of pairs observed] = M

2
#
÷fl + fl(1 ≠ ÷)(1 ≠ ‰M≠2) + (1 ≠ fl)(1 ≠ ‰M≠1)

$
(6)

As before (see Equation 3), when all other parameters are held constant, the false discovery rate will increase as the
sample size M increases. This is because the number of observed pairs increases more rapidly than the number of true
pairs. Further, with imperfect sensitivity, increasing the sample size M has an even more substantial effect (due to an
additional term containing 1-‰M ) on the expected number of pairs observed than before, thus more quickly increasing
the false discovery rate.
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C Single link and multiple true transmissions

C.1 Assumptions

Thus far, we have assumed that every infection i has been connected by transmission to exactly one other infection;
in other words, that i is either an infector or infectee, but not both. However, we are often interested in capturing
all transmission partners of i, including its infector and all infectees. Therefore, we relax the single transmission
assumption and calculate the probability of correctly identifying a true pair given that i has transmitted to R (the
pathogen reproductive number) other individuals in the population. However, we maintain that each individual has
been infected by exactly one other individual, i.e., that multiple infections are not possible. Therefore, each infection i

has on average R + 1 true transmission partners, and we define k as the number of these true partners that are in the
sample M .

As a result, we remain with just one of our original assumptions:

1. Each infection i is linked by the linkage criteria to only one other infection j in the sampled population (M).

C.2 Derivation of the probability of transmission given linkage

Derivation for a given value of k

If there are k individuals in sample M that are true transmission partners of infection i, then the probability an identified
link is true given that any infection i has k sampled transmission partners is:

Pr(yij | zij , k) = Pr(yij , zij , k)
Pr(zij , k)

= Pr(yij , zij , k)
Pr(yij , zij , k) + Pr(¬yij , zij , k)

= Pr(yij , zij | k) Pr(k)
Pr(yij , zij | k) Pr(k) + Pr(¬yij , zij | k) Pr(k)

= Pr(yij , zij | k)
Pr(yij , zij | k) + Pr(¬yij , zij | k)

We can show that the probability that infection i is not linked (by the linkage citeria) to any of its k true partners is
(1 ≠ ÷)k, so the probability that infection i is linked to at least one of its k true partners in the sample is 1 ≠ (1 ≠ ÷)k.
Because we still assume that the linkage criteria will identify exactly one link for each infection i, this is equivalent to
the probability Pr(yij , zij | k):

= [1 ≠ (1 ≠ ÷)k]
[1 ≠ (1 ≠ ÷)k] + Pr(¬yij , zij | k)

Similarly, the probability that infection i is incorrectly linked to another infection is the probability it is not linked to any
of its true partners ((1 ≠ ÷)k) times the probability of not linking to any of the other sampled infections (1 ≠ ‰M≠1≠k).
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Therefore, the probability of transmission given linkage, assuming k sampled partners and single linkage is:

Pr(yij | zij , k) = [1 ≠ (1 ≠ ÷)k]
[1 ≠ (1 ≠ ÷)k] + (1 ≠ ÷)k(1 ≠ ‰M≠1≠k) (7)

Derivation for all possible values of k

We can extend Equation 7 to include all possible values of k for a given infection i:

Pr(yij | zij) =
Œÿ

k=0
Pr(yij | zij , k) Pr(k | zij)

=
Œÿ

k=0
Pr(yij | zij , k)Pr(zij | k) Pr(k)

Pr(zij)

= 1
Pr(zij)

Œÿ

k=0
Pr(yij | zij , k) Pr(zij | k) Pr(k)

= 1
Pr(zij)

Œÿ

k=0
Pr(yij , zij | k) Pr(k)

= 1
qŒ

k=0 Pr(zij | k) Pr(k)

Œÿ

k=0
Pr(yij , zij | k) Pr(k)

= 1
qŒ

k=0[Pr(yij , zij | k) + Pr(¬yij , zij | k)] Pr(k)

Œÿ

k=0
Pr(yij , zij | k) Pr(k)

=
qŒ

k=0 Pr(k) Pr(yij , zij | k)
qŒ

k=0 Pr(k)[Pr(yij , zij | k) + Pr(¬yij , zij | k)]

=
qŒ

k=0 Pr(k)(1 ≠ (1 ≠ ÷)k)
qŒ

k=0 Pr(k)[(1 ≠ (1 ≠ ÷)k) + (1 ≠ ÷)k(1 ≠ ‰M≠1≠k)]

(8)

As a check on the formulation of Equation 8, let there be only one true transmission partner for infection i. In this
instance, k = 1 occurs with probability fl (the probability that this single partner is in the sample) and k = 0 occurs
with probability 1 ≠ fl:
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Pr(yij | zij) =
q1

k=0 Pr(k)(1 ≠ (1 ≠ ÷)k)
q1

k=0 Pr(k)[(1 ≠ (1 ≠ ÷)k) + (1 ≠ ÷)k(1 ≠ ‰M≠1≠k)]

= [(1 ≠ fl)⇠⇠⇠⇠⇠⇠⇠⇠: 0
(1 ≠ (1 ≠ ÷)0) + fl(1 ≠ (1 ≠ ÷)1]

S

U(1 ≠ fl)[⇠⇠⇠⇠⇠⇠⇠⇠: 0
(1 ≠ (1 ≠ ÷)0) +⇠⇠⇠⇠⇠: 1(1 ≠ ÷)0(1 ≠ ‰M≠1≠0)] +

fl[(1 ≠ (1 ≠ ÷)1) + (1 ≠ ÷)1(1 ≠ ‰M≠1≠1)]

T

V

= ÷fl

(1 ≠ fl)(1 ≠ ‰M≠1) + ÷fl + fl(1 ≠ ÷)(1 ≠ ‰M≠2)

(9)

This result is equivalent to Equation 4 above, which was also derived under the assumption that each infection i is truly
connected by transmission to exactly one other infection.

Therefore, we can conclude that the probability of transmission given linkage, assuming single linkage and for
all possible values of k transmission links in the sample, is:

Pr(yij | zij) =
qŒ

k=0 Pr(k)(1 ≠ (1 ≠ ÷)k)
qŒ

k=0 Pr(k)[(1 ≠ (1 ≠ ÷)k) + (1 ≠ ÷)k(1 ≠ ‰M≠1≠k)] (10)

Derivation if k is poisson-distributed

In an infectious disease outbreak, it may be difficult or impossible to know the true number of transmission partners in
the sample for any given infection. Therefore, we use the population average for the number of secondary infections,
which we define here are Rpop. Note that we use Rpop instead of the traditional Re because Re has a specific meaning
with regards to disease susceptibility in the population, and here we mean the average number of secondary infections
of each infection in a finite population. As discussed in the main text, in practice Rpop is always less than one.

We draw k from a Poisson distribution with mean ⁄ = fl(Rpop + 1). Here, Rpop + 1 is the total number of transmission
links for a given sampled infection i; we add one because infection i is linked to the Rpop individuals he/she infects
as well as to his/her infector (note that multiple infections are not allowed under the assumption that each infected
individual is infected by exactly one individual). We multiply by fl to account for the probability that each of these true
transmission partners is actually included in the sample.

We incorporate the Poisson representation of the number of true transmission links in the sample with the Poisson
probability density function:

Pr(k | ⁄) = ⁄ke≠⁄ 1
k! . (11)

9



Returning to the result of the derivation in Equation 8, we now have:

Pr(yij | zij) =

=
qŒ

k=0 Pr(k | ⁄)(1 ≠ (1 ≠ ÷)k)
qŒ

k=0 Pr(k | ⁄)[(1 ≠ (1 ≠ ÷)k) + (1 ≠ ÷)k(1 ≠ ‰M≠1≠k)]

=
qŒ

k=0 ⁄ke≠⁄ 1
k!(1 ≠ (1 ≠ ÷)k)

qŒ
k=0 ⁄ke≠⁄ 1

k! [(1 ≠ (1 ≠ ÷)k) + (1 ≠ ÷)k(1 ≠ ‰M≠1≠k)]

=
qŒ

k=0
Ë
⁄ke≠⁄ 1

k!

È
≠

qŒ
k=0

Ë
⁄ke≠⁄ 1

k!(1 ≠ ÷)k
È

qŒ
k=0

Ë
⁄ke≠⁄ 1

k!

È
≠

qŒ
k=0

Ë
⁄ke≠⁄ 1

k!(1 ≠ ÷)k
È

+ qŒ
k=0

Ë
⁄ke≠⁄ 1

k!(1 ≠ ÷)k(1 ≠ ‰M≠1≠k)
È

we know that
Ë
⁄ke≠⁄ 1

k!

È
is the probability density function of a Poisson distribution with mean ⁄, therefore the sum of

this expression over all values of k is, by definition, equal to one.

=
1 ≠

qŒ
k=0

Ë
⁄ke≠⁄ 1

k!(1 ≠ ÷)k
È

1 ≠
qŒ

k=0
Ë
⁄ke≠⁄ 1

k!(1 ≠ ÷)k
È

+ qŒ
k=0

Ë
⁄ke≠⁄ 1

k!(1 ≠ ÷)k(1 ≠ ‰M≠1≠k)
È

=
1 ≠

qŒ
k=0

Ë
⁄ke≠⁄ 1

k!(1 ≠ ÷)k
È

1 ≠
qŒ

k=0
Ë
⁄ke≠⁄ 1

k!(1 ≠ ÷)k
È

+ qŒ
k=0

Ë
⁄ke≠⁄ 1

k!(1 ≠ ÷)k
È

≠
qŒ

k=0
Ë
⁄ke≠⁄ 1

k!(1 ≠ ÷)k(‰M≠1≠k)
È

=
1 ≠

qŒ
k=0

Ë
⁄ke≠⁄ 1

k!(1 ≠ ÷)k
È

1 ≠
qŒ

k=0
Ë
⁄ke≠⁄ 1

k!(1 ≠ ÷)k(‰M≠1≠k)
È

we now move terms not dependent on k out of the summation:

=
1 ≠ e≠⁄ qŒ

k=0
Ë
⁄k 1

k!(1 ≠ ÷)k
È

1 ≠ e≠⁄‰M≠1 qŒ
k=0

Ë
⁄k 1

k!(1 ≠ ÷)k‰≠k
È

and combine terms raised to exponent k:

=
1 ≠ e≠⁄ qŒ

k=0
Ë
(⁄(1 ≠ ÷))k 1

k!

È

1 ≠ e≠⁄‰M≠1 qŒ
k=0

Ë1
⁄(1≠÷)

‰

2k 1
k!

È

10



We now multiply the summation in the numerator by one, using terms such that we arrive at a new specification of the
Poisson probability density function, this time with the rate parameter redefined as ⁄(1 ≠ ÷):

=
1 ≠ e≠⁄ qŒ

k=0
Ë
(⁄(1 ≠ ÷))k 1

k!

1
e≠⁄(1≠÷)

e≠⁄(1≠÷)

2È

1 ≠ e≠⁄‰M≠1 qŒ
k=0

Ë1
⁄(1≠÷)

‰

2k 1
k!

È

=
1 ≠ e≠⁄

e≠⁄(1≠÷)
qŒ

k=0
Ë
(⁄(1 ≠ ÷))k

1
e≠⁄(1≠÷)

2
1
k!

È

1 ≠ e≠⁄‰M≠1 qŒ
k=0

Ë1
⁄(1≠÷)

‰

2k 1
k!

È

We now repeat this process in the denominator, but with a rate parameter of ⁄(1 ≠ ÷)/‰:

=
1 ≠ e≠⁄

e≠⁄(1≠÷)
qŒ

k=0
Ë
(⁄(1 ≠ ÷))k

1
e≠⁄(1≠÷)

2
1
k!

È

1 ≠ e≠⁄‰M≠1 qŒ
k=0

Ë1
⁄(1≠÷)

‰

2k 1
k!

1
e≠⁄(1≠÷)/‰

e≠⁄(1≠÷)/‰

2È

=
1 ≠ e≠⁄

e≠⁄(1≠÷)
qŒ

k=0
Ë
(⁄(1 ≠ ÷))k

1
e≠⁄(1≠÷)

2
1
k!

È

1 ≠ e≠⁄‰M≠1

e≠⁄(1≠÷)/‰

qŒ
k=0

Ë1
⁄(1≠÷)

‰

2k1
e≠⁄(1≠÷)/‰

2
1
k!

È

=
1 ≠ e≠⁄

e≠⁄(1≠÷)

1 ≠ e≠⁄‰M≠1

e≠⁄(1≠÷)/‰

= 1 ≠ e≠⁄+⁄≠⁄÷

1 ≠ (‰M≠1)e≠⁄+ ⁄
‰ ≠ ⁄÷

‰

= 1 ≠ e≠⁄÷

1 ≠ (‰M≠1)e⁄( 1≠÷
‰ ≠1)

Finally, we rewrite ⁄ in terms of the sampling fraction (fl) and Rpop as defined above, where ⁄ = fl(Rpop + 1):

= 1 ≠ e≠fl(Rpop+1)÷

1 ≠ (‰M≠1)efl(Rpop+1)( 1≠÷
‰ ≠1)

As a check on the formulation in the equation above, let ‰ equal one, indicating perfect specificity of the linkage
criteria:

Pr(yij | zij) = 1 ≠ e≠fl(Rpop+1)÷

1 ≠ (‰M≠1)efl(Rpop+1)( 1≠÷
1 ≠1)

= 1 ≠ e≠fl(Rpop+1)÷

1 ≠ e≠fl(Rpop+1)÷ = 1 (12)

With the assumption of perfect specificity (and our original assumption that the linkage criteria identifies only a single
link for a given infection), we find that any identified links will be correct. This is because perfect specificity ensures

11



that all negative links will be correctly avoided, leaving only true infectors as possible links.

Therefore, we can conclude that the probability of transmission given linkage, assuming single linkage and
assuming k is poisson-distributed, is:

Pr(yij | zij) = 1 ≠ e≠fl(Rpop+1)÷

1 ≠ (‰M≠1)efl(Rpop+1)( 1≠÷
‰ ≠1)

(13)

C.3 Calculating the expected number of pairs in the sample

To calculate the expected number of pairs in the sample under the current assumptions, we start by defining the vector
ki, which gives the number of true transmission partners of infection i in a sample of size M (note that this includes the
infector of i, as well us any infectees). We then define K as the summation of ki over all i infections in the sample:

K =
Mÿ

i=1
ki

Therefore, the total number of true pairs in the sample is K
2 , where K is divided by two because each pair will

be counted exactly twice (once as an infector, and once as an infectee, since we do not account for directionality).
Accounting for the probability that a true transmission pair is correctly identified by the linkage criteria (÷), the expected
number of true pairs in the sample is:

E[number of true pairs] = E
5

K÷

2

6
= ÷

2 ◊ E[K].

Under our assumption that each k is Poisson distributed with rate ⁄ = fl(Rpop + 1), the sum of all k is also Poisson
distributed with rate M ◊ ⁄.

K ≥ Poisson
!
Mfl(Rpop + 1)

"

Since the expected value of a Poisson distributed discrete random variable is simply the rate ⁄, Mfl(Rpop +1) substitutes
for K in the expected number of true pairs.

E[number of true pairs] = ÷

2 ◊ E[K] = Mfl(Rpop + 1)÷
2

We can then use this to calculate the expected number of observed pairs in the sample, substituting Equation 13 for the
probability a pair is true:

12



E[number of pairs observed] = E[number of true pairs]
Pr(a pair is true)

=
#Mfl(Rpop+1)÷

2
$

5
1≠e≠fl(Rpop+1)÷

1≠(‰M≠1)efl(Rpop+1)( 1≠÷
‰ ≠1)

6

=
!
Mfl(Rpop + 1)÷

"!
1 ≠ (‰M≠1)efl(Rpop+1)( 1≠÷

‰ ≠1)
"

2
!
1 ≠ e≠fl(Rpop+1)÷"

Therefore, the expected number of pairs observed, assuming that the number of transmission links of any
infection i is Poisson-distributed and single linkage, is:

E[number of pairs observed] = M

2
Ë÷fl(Rpop + 1)

!
1 ≠ (‰M≠1)efl(Rpop+1)( 1≠÷

‰ ≠1)
"

1 ≠ e≠fl(Rpop+1)÷

È
(14)
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D Multiple links and multiple true transmissions

D.1 Assumptions

Here we relax the final assumption that the linkage criteria only identifies pairs of samples, and allow the linkage
criteria to identify multiple links of infection i. We do, however, assume that linkage events are independent of one
another, i.e. linkage of i to j has no bearing on linkage of infection i to any other sampled infection.

D.2 Derivation of the probability of transmission given linkage

Derivation for a given value of k

We begin as we did in section C.2, by deriving the probability of transmission for a given value of k, where k is the
number of infections in the sample M that are true transmission partners of infection i.

Pr(yij | zij , k) = Pr(yij , zij , k)
Pr(zij , k)

= Pr(yij , zij , k)
Pr(yij , zij , k) + Pr(¬yij , zij , k)

= Pr(yij , zij | k) Pr(k)
Pr(yij , zij | k) Pr(k) + Pr(¬yij , zij | k) Pr(k)

= Pr(yij , zij | k)
Pr(yij , zij | k) + Pr(¬yij , zij | k)

Without the single linkage assumption, the probability Pr(yij , zij | k) is no longer simply 1 minus the probability
of not linking to any true links. Therefore, we continue the derivation by applying Bayes rule and the law of total
probability to each term:

= Pr(zij | yij , k) Pr(yij | k)
Pr(zij | yij , k) Pr(yij | k) + Pr(zij | ¬yij , k) Pr(¬yij | k)

Given our assumption of independence, the probability that the linkage criteria correctly links infections i and j (i.e.,
Pr(zij | yij , k)) is the sensitivity of the linkage criteria (÷). And the probability that j is a transmission partner of i

is simply the number of true partners of i in the sample (k), over the total number of other infections in the sample
(M ≠ 1):

=
÷ k

M≠1
÷ k

M≠1 + Pr(zij | ¬yij , k) Pr(¬yij | k)

14



Similarly, the probability of linking i and j given that they are not a true transmission pair (Pr(zij | ¬yij , k)) is simply
the false positive rate, or (1 ≠ ‰). And the probability that j is not a transmission partner of i is the number of infections
not connected to i (M ≠ k ≠ 1) over the number of other infections in the sample (M ≠ 1):

=
÷ k

M≠1
÷ k

M≠1 + (1 ≠ ‰)M≠k≠1
M≠1

= ÷k

÷k + (1 ≠ ‰)(M ≠ k ≠ 1)

Therefore, the probability of transmission given linkage for a given value of k is:

Pr(yij | zij) = ÷k

÷k + (1 ≠ ‰)(M ≠ k ≠ 1) (15)

Derivation for all possible values of k

We can extend Equation 15 to include all possibilities of k for a given infection i, again starting as in the previous
section:

Pr(yij | zij) =
Œÿ

k=0
Pr(yij | zij , k) Pr(k | zij)

=
Œÿ

k=0
Pr(yij | zij , k)Pr(zij | k) Pr(k)

Pr(zij)

= 1
Pr(zij)

Œÿ

k=0
Pr(yij | zij , k) Pr(zij | k) Pr(k)

= 1
Pr(zij)

Œÿ

k=0
Pr(yij , zij | k) Pr(k)

= 1
qŒ

k=0 Pr(zij | k) Pr(k)

Œÿ

k=0
Pr(yij , zij | k) Pr(k)

= 1
qŒ

k=0[Pr(yij , zij | k) + Pr(¬yij , zij | k)] Pr(k)

Œÿ

k=0
Pr(yij , zij | k) Pr(k)

=
qŒ

k=0 Pr(k) Pr(yij , zij | k)
qŒ

k=0 Pr(k)[Pr(yij , zij | k) + Pr(¬yij , zij | k)]

=
qŒ

k=0 Pr(k)÷k
qŒ

k=0 Pr(k)[÷k + (1 ≠ ‰)(M ≠ k ≠ 1)]

15



Therefore, the probability of transmission given linkage for all possible values of k transmission partners in the
sample is:

Pr(yij | zij) =
qŒ

k=0 Pr(k)÷k
qŒ

k=0 Pr(k)[÷k + (1 ≠ ‰)(M ≠ k ≠ 1)] (16)

Derivation if k is poisson-distributed

As in the previous section, we calculate the probability of transmission assuming k is poisson-distributed with mean
⁄ = fl(Rpop + 1):

Pr(yij | zij) =
qŒ

k=0 Pr(k)÷k
qŒ

k=0 Pr(k)[÷k + (1 ≠ ‰)(M ≠ k ≠ 1)]

We then pull all terms not containing k out of the sums and expand out all additions and subtractions:

= ÷
qŒ

k=0 Pr(k)k
÷

qŒ
k=0 Pr(k)k + (1 ≠ ‰)[M qŒ

k=0 Pr(k) ≠
qŒ

k=0 Pr(k)k ≠
qŒ

k=0 Pr(k)]

We know that the sum of a random variable times the probability of that variable is equal to the expectation of that
variable, i.e. E[k] = q Pr(k)k, and that the sum of the probability of a random variable is equal to one:

= ÷E[k]
÷E[k] + (1 ≠ ‰)(M ≠ E[k] ≠ 1)

We also know that the expectation of a Poisson-distributed variable is equal to the rate parameter, ⁄:

= ÷⁄

÷⁄ + (1 ≠ ‰)(M ≠ ⁄ ≠ 1)

Finally, we rewrite ⁄ in terms of the sampling fraction (fl) and the effective reproductive number (Rpop):

= ÷fl(Rpop + 1)
÷fl(Rpop + 1) + (1 ≠ ‰)(M ≠ fl(Rpop + 1) ≠ 1)

Therefore, the probability of transmission given linkage assuming k is Poisson-distributed is:

Pr(yij | zij) = ÷fl(Rpop + 1)
÷fl(Rpop + 1) + (1 ≠ ‰)(M ≠ fl(Rpop + 1) ≠ 1)

(17)
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D.2.1 Calculating the expected number of pairs in the sample

To calculate the expected number of pairs in the sample allowing for multiple transmissions and multiple linkages, we
start, as in section C.3 by defining K as the summation of ki over all i infections in the sample of size M :

K =
Mÿ

i=1
ki

Therefore, the total number of true pairs in the sample is K
2 and the expected number of true pairs in the sample is:

E[number of true pairs] = E
5

K÷

2

6
= ÷

2 ◊ E[K].

Under our assumption that each k is Poisson distributed with rate ⁄ = fl(Rpop + 1), the sum of all k is also Poisson
distributed with rate M ◊ ⁄. Therefore, E[K] = M ◊ ⁄ = Mfl(Rpop + 1):

E[number of true pairs] = ÷

2 ◊ E[K] = Mfl(Rpop + 1)÷
2

We can then use this to calculate the expected number of observed pairs in the sample, substituting Equation 17 for the
probability a pair is true:

E[number of pairs observed] = E[number of true pairs]
Pr(a pair is true)

=
#Mfl(Rpop+1)÷

2
$

5
÷fl(Rpop+1)

÷fl(RpopR+1)+(1≠‰)(M≠fl(Rpop+1)≠1)

6

=
#
Mfl(Rpop + 1)÷][÷fl(Rpop + 1) + (1 ≠ ‰)(M ≠ fl(Rpop + 1) ≠ 1)

$

2÷fl(Rpop + 1)

= M

2
#
÷fl(Rpop + 1) + (1 ≠ ‰)(M ≠ fl(Rpop + 1) ≠ 1)

$

Therefore, the expected number of pairs observed assuming that the number of transmission links of any
infection i is Poisson-distributed is:

E[number of pairs observed] = M

2
#
÷fl(Rpop + 1) + (1 ≠ ‰)(M ≠ fl(Rpop + 1) ≠ 1)

$
(18)
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Supplementary Text 2
Determining the sensitivity and specificity of genetic distance as a linkage criteria

A Estimating sensitivity and specificity from pathogen-specific parameters

The sensitivity and specificity of the criteria used to distinguish between linked and unlinked pathogen infections

are key to determining the overall accuracy of this criteria. Here we estimate these parameters for a specific genetic

distance threshold, i.e., a particular number of mutations between two pathogen sequences.

If the genetic distance distribution for linked and unlinked infections is known, determining the sensitivity (the true

positive rate) and specificity (the true negative rate) for a specific threshold is straightforward and can be visualized on

the distributions below:

Assuming the distributions are normalized such that the total area under each curve is equal to 1, the sensitivity is

simply the portion of the genetic distance distribution for linked infections to the left of the threshold (cumulative

distribution function (CDF) at this threshold), and the specificity is the portion of the genetic distance distribution for

unlinked infections to the right of the threshold (1-CDF at this genetic distance threshold).

The genetic distance distributions for linked and unlinked infections depend on the following:

1. The number of mutations that occur in one generation of pathogen transmission. We assume this is Poisson-

distributed around the pathogen mutation rate, µ, in mutations per genome per generation.

2. The distribution of the number of generations between all infections in the population.

3. The number of generations allowed between infections considered linked. When considering direct transmissions,

only 1 generation of pathogen transmission can occur between linked infections.
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A.1 Deriving the genetic distance distribution for linked infections

To determine the genetic distance distribution for linked infections, we first consider the probability of observing a

specific genetic distance, d between the sequences of two infected individuals linked by transmission:

glinkÿ

i=1
Pr (infections are i generations apart) · Pr (observing d mutations | infections are i generations apart)

=
glinkÿ

i=1
g(i) · f(d; i · µ)

where glink is the maximum number of generations between two linked infections.

To ensure we obtain a proper distribution (i.e., the sum of these probabilities over all values of d is equal to one), we

must normalize each probability by the sum over all values of d:

Pr (linked infections are d mutations apart) =

= 1
qŒ

d=0
qglink

i=1 g(i) · f(d; i · µ)

glinkÿ

i=1
g(i) · f(d; i · µ)

because f(d; i · µ) is probability density function of a Poisson distribution with mean i · µ, the sum of this expression

over all values of d is, by definition, one. Therefore, we can simplify this equation as follows:

= 1
qglink

i=1 g(i)

glinkÿ

i=1
g(i) · f(d; i · µ)

By evaluating the above expression for all values of d, we can obtain the complete genetic distance distribution for

linked infections in the population, where infections are considered linked if they are separated by no more than glink

generations.

A.2 Deriving the genetic distance distribution for unlinked infections

We repeat the derivation above for unlinked infections, this time summing from glink + 1 to gmax, the maximum number

of generations considered (often equal to 2 ◊ the duration of the outbreak, in generations of transmission):

Pr (unlinked infections are d mutations apart) =

= 1
qgmax

i=glink+1 g(i)

gmaxÿ

i=glink+1
g(i) · f(d; i · µ)

2



B Simulating genetic distance distributions

As shown above, estimating sensitivity and specificity is straightforward once the genetic distance distributions of

linked and unlinked infections are obtained. While the number of mutations per generation can reasonably be assumed

to be Poisson-distributed, the Poisson distribution is not a good approximation for the distribution of generations

between all infections in a finite population.

Determining the distribution of the mean number of generations between infections is far from trivial. Through outbreak

simulations, we determined that this distribution is highly dependent on the reproductive number R of the pathogen and,

to some extent, the number of generations of transmission d. Given these observations, we calculated the distribution

empirically for discrete values of R between 1.3 and 18 by performing 1000 outbreak simulations for each R and

averaging the distribution of generations between all pairs of infections over all simulations.

We simulated outbreaks using the simOutbreak function implemented in the outbreaker R package by Jombart et al. and

each simulation was run for the number of generations needed to achieve a final outbreak size of approximately 1000

infections (ln(1000)/ln(R)), since this was the number of generations used in simulations throughout this paper. As in

other simulations described in Methods, we we assumed a large number of susceptible individuals in the population

(n.hosts=100,000) and no importation events (single source outbreak). We also assumed every infected individual

transmitted their infection exactly one time step after infection (generation time = 1 time step).

The resulting averaged generation distributions are available at https://github.com/HopkinsIDD/phylosamp. Since these

simulations are time consuming, especially for low values of R (which require a larger number of generations d to

achieve at least 1000 infections), we used these average results when calculating the sensitivity and specificity using the

mutation rate method, and provide them for others wishing to conduct similar analyses. We also note that, for a single

source outbreak, the maximum possible interesting value of gmax is 2d. Therefore, all distributions include probabilities

for generations between infections of up to 52 generations, which is two times the number of generations (26) used in

outbreak simulations for R = 1.3.
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