Supplementary Figures Figure S1 - Herd-immunity threshold under proportionate mixing and incomplete resistance. (left) Herd-immunity threshold (z^*) under proportionate mixing ($\delta = \rho$) and incomplete resistance $F = R_{0_1}/R_{0_2}$ with $R_0 = 1.5$. (right) Same output as in the left panel but for with $R_0 = 2.5$. The scenario of F = 0 is fully explored in the main text. Simulations ran for 365 days with an infectious period ($1/\sigma$) of 5 days, $\gamma = 0$, $\delta = \rho$. Figure S2 - Herd-immunity threshold and proportion exposed under proportionate and assortative mixing. Herd-immunity threshold (z*, panel A) when varying proportion of the population fully resistant (ρ with $R_{0_1}=0$ and $R_0=R_{0_2}$) under proportionate mixing ($\delta=\rho$). Panel B shows the same outputs but under assortative mixing ($\delta=1$). Proportion exposed (z', i.e. final exposed at the end of simulation) under proportionate mixing (C) and assortative mixing (D). Simulations ran for 365 days with an infectious period ($1/\sigma$) of 5 days, $\gamma=0$. Each color band in the color scales equates to a 0.125 change, and black covers the range 0-0.01. Figure S3 - Effect of duration of immunity. Time series of proportion infected (y) for varying proportion of resistant (ρ) and duration of immunity ($1/\gamma$, color scale) under proportionate mixing ($\delta = \rho$). Proportion of resistant (ρ) for each panel is presented on the title. Infectious period $1/\sigma = 5$ days.