
Supplementary Information for Discretizing clinical information can reduce 

antibiotic misuse: a game theoretic approach 

S-1 Extended calculation of Payoffs and MPE with a Dichotomous Signal System 

 

If the strategy profile is symmetric, then the payoff of each player when they both treat everyone ( ) is:  

   

and when both treat only patients with a high signal ( ) it is:  

 

   

 

If the strategy profile is not symmetric, then the payoff of the physician who treats everyone is:  

   

and the payoff of the physician who treats only patients with a high signal is:  

   

When we want to check whether a given symmetric strategy profile is an MPE, the “one-stage deviation 



principle” still applies, but there are only two types of possible deviations - either from  to  or vice 

versa. Thus,  is a symmetric stage equilibrium iff: 

 

 

 

Using (R.1) and (R.4) we get 

 

 

 

which means 

 

   

 

and  is a symmetric stage equilibrium iff: 

 

 

 

Using (R.2) and (R.3) we get 

 

 

 

which means 

 

 

  

or 

𝑘𝛼(𝑟2 − 𝑟1)([1 + 𝐹(𝑇)]𝑝𝐿 − 𝐹(𝑇)𝑝𝐻)

1 − 𝐹(𝑇)
≤ 𝑣𝑖

𝑘−1(𝑠𝑘−1) − 𝑣𝑖
𝑘−2(𝑠𝑘−2) 

   

 

 

S-2 Claim R.1   

Under the fixed symmetric policy  (i.e. ) 

 



 

That is, the fixed symmetric policy of “treating only patients with a high signal” yields a total expected payoff 

(from E-state  onwards) that is strictly increasing in .  

Proof. By induction. 

By definition, if  then . If  then using (R.2):  

 

 

 (S-2.1) 

 

(S-2.1) holds for :  

 

 

Assume that (S-2.1) holds for some ; then it holds for as well:  



∎ 

 

 

S-3 Threshold Decision Rules 

 We present a proof that threshold decision rules are the most efficient, in the sense that for any given 

non-threshold decision rule we can find a threshold decision rule that yields a higher payoff. First, we need to 

define a general decision rule. 

As defined in section 1.2, a Markovian threshold decision rule is a number 𝑑𝑖
𝑘 ∈ [0,1), which means that 

physician 𝑖 will choose 𝐴 on E-state 𝑘 (administer antibiotic treatment) if the posterior of his patient is 𝑝𝑖 ≥

𝑑𝑖
𝑘  and will choose 𝑊  (withhold treatment) if 𝑝𝑖 < 𝑑𝑖

𝑘 . A Markovian general decision rule is an indicator 

function 𝐼𝑖
𝑘: [0,1) → {0,1}. The value of 𝐼𝑖

𝑘 equals 1 for any posterior that physician 𝑖 wishes to treat. If we 

define 𝑋𝑖 as the set of all posteriors for which physician 𝑖 chooses 𝐴 on E-state 𝑘, we get:  

  (S-3.1) 

We assume that 𝐼𝑖
𝑘  is measurable. Note that a threshold decision rule is a special case of (S-3.1) with 

. 

From the definitions of the payoff function (M.1.5) and (M.1.6) we can see that the decision rule chosen 

by physician 𝑖 on E-state 𝑘 affects his own payoff through two elements: the expected posterior of a patient that 

is treated by him and the probability that he will indeed treat the patient. The explicit terms of these elements in 

the case of threshold decision rules are:  

 
 (S-3.2) 

 
 (S-3.3) 

and the explicit terms of these elements in the case of general decision rules are (respectively):  

 
 (S-3.4) 

 
 (S-3.5) 

Thus, the expected payoff of physician 𝑖 on E-state 𝑘 in the case of general decision rules is:  



 

 

(S-3.6) 

 

Theorem S-3.1  

For any given general non-threshold decision rule 𝐼𝑖
𝑘 of physician 𝑖 there exists a threshold decision rule 𝑑𝑖

𝑘, 

such that if we define  

 

then .  

 

Proof. For any given non-threshold  we will choose a corresponding  such that  

 

and therefore, obviously,  

 

By (S-3.6) we get  

The denominators are equal by construction, and therefore we need only to compare the nominators. By (S-3.4)  

 



which is the difference in the average posterior per probability of treatment, where both probabilities of treatment 

are equal . Obviously, the highest average posterior per given 

probability of treatment is achieved by treating the patients with the highest posteriors, and therefore  

 

  ∎ 

  

 

S-4 Lemma M.2.1   

 

  

 

Proof.   

 

∎

 

 

S-5 Theorem M.2.2   

 

 

Proof.  

 

Suppose to the contrary that  does not approach  when . Then there exists  such that 

 for infinitely many ’s.  

Thus, the following equation should hold for infinitely many ’s:  

 
 (S-5.1) 

By (M.1.7) we get  



=

 

The expression  is always positive (since ), and therefore for infinitely many ’s the 

following equation holds:  

 

  

 We know that:  

 

 Thus,  

 

 And therefore:  

(S-5.2) 

 

 Let us focus on the first addend:  



 

 Returning to (S-5.2), a necessary condition for (S-5.1) to hold is  

 

 and therefore  

 

 (S-5.3) 

must hold for infinitely many ’s. But  and the right side of equation (S-5.3) is a continuous 

function on the closed interval  (the denominator can not equal 0, because  and because of 

the definition of ). Thus, it has a maximum, and, therefore, the inequality cannot hold for infinitely many 

’s.  ∎ 

 

 

S-6 Validity of the one-stage deviation principle 

The one-stage deviation principle states that a strategy-profile  is subgame perfect if and only if there is 

no player  and no strategy  that agrees with  except at a single (stage)  and (history) , and such that  

is a better response to  than  conditional on history  being reached. 

Subgame perfection obviously implies the one-stage deviation principle. For the formal proof that the one-

stage deviation principle is a sufficient condition for subgame perfection see Fudenberg and Tirole [13] (p. 109). 

The proof of this principle for finite multi-stage games argues that if a strategy satisfies the one-stage deviation 

principle then it cannot be improved at some subgame by a finite number of deviations. 

This proof is not sufficient in the general case of infinite-horizon games, since it does not exclude the 

possibility that player  could gain by some infinite sequence of deviations, even though he cannot gain by a 

single deviation in any subgame. Therefore, generally, the principle holds for an infinite-horizon stage game that 

is “continuous at infinity”, i.e. a game in which events in the distant future are relatively unimportant. This 

condition is satisfied if the overall payoff function is a discounted sum of per-period payoffs, and the per-period 

payoffs are uniformly bounded. 

However, in our case, although in each stage (E-state) there is a positive probability that the game will 

continue (and in this sense the game has an infinite horizon), the proof of the finite game applies. Since we have 

limited ourselves to Markovian strategies that depend only on the E-state number  (i.e. the current resistance 

level) and not on the history of observed actions, the strategies themselves are finite vectors. Therefore, any 

alternative strategy  contains only a finite number of deviations from , and the “one-stage deviation principle” 

can be applied without the use of discounted payoffs. 



 

 

 

S-7 Equilibrium Conditions 

 

Based on the “one-stage deviation principle”, the basic condition for an MPE is stated in (M.3.1). Using 

equations (M.1.5) and (M.1.7) and basic algebra, the condition (M.3.1) can be also represented as a set of 

differences-equations. 

 if for every  and for all   

 

(S-7.1) 

 

Thus, when :  

 
 (S-7.2) 

 

For any given  let  

 

 

Using this definition, the differences-equations for  become: 

when : 

for ,  if  

 
 (S-7.3) 

 

and for ,  if  

 
 (S-7.4) 

 

and when :  

for ,  if  



 
 (S-7.5) 

 

 and for ,  if  

 
 (S-7.6) 

 

 

S-8 Lemma M.3.1   

 is strictly increasing:  

 

Proof.  

 is not well defined at . Therefore, we first show monotonicity for  and , and 

then we show that the limit  exists. 

We need to show that for any  or :  

 

 

 

 

 The common denominator is:  

 

 It is positive when either  or . Thus, in these cases we need to show that the 

nominator is positive as well.  



 

At this stage we need to examine each case separately.  

When :  

The first multiplicand is always positive (since ), and the second multiplicand equals:  

and when :  

The first multiplicand is always positive (since ), and the second multiplicand equals:  



As for :  

  

and therefore the limit value exists.      ∎ 

 

 

S-9 Theorem M.3.2   

It is impossible that the following two conditions hold simultaneously at any given E-state 𝑘 > 1:  

 

and  

 

 

 

Proof. When , by (S-7.5), if  then  



 

 

And by (S-7.6), if  then  

 

Combining these equations we get  

 

But by lemma 5.1  is strictly increasing.  

The proof for  follows the same steps, using (S-7.3) and (S-7.4) instead of (S-7.5) and (S-7.6). ∎ 

 

 

S-10 Lemma M.3.3   

 

  

 

Proof.  By lemma M.2.1  

 

By (M.1.5)  

 Thus, we need to show that  

  

 Checking this condition:  



 

 And  for any  such that .   ∎ 

 

 

 

S-11 Theorem M.3.5 

Let  be a stage equilibrium.  

 

  

 

Proof. When , by (S-7.5) a player does not have an incentive to deviate downwards from  if for any 

,  

 

and by (S-7.6), a player does not have an incentive to deviate upwards from  if for any ,  

 

Therefore, due to the monotonicity of  (lemma 5.1),  is a stage equilibrium if  

 

We start with the term on the right-hand side of the equation. The maximal possible immediate payoff (with 

perfect information) at E-state  is , and therefore  

 

 As to the left term, by (M.3.2) for any ,  

 =
1+𝐹 𝑑

𝑘

1−𝐹 𝑑
𝑘 𝑑

𝑘
−

𝐹 𝑑
𝑘

1−𝐹 𝑑𝑘
⋅

1

𝑑
𝑘 𝑝⋅𝑓(𝑝)𝑑𝑝

1

𝑑
𝑘 𝑓(𝑝)𝑑𝑝

and therefore  

 

The limit of the last part of this term is:  



 

and therefore  

 

which proves that it cannot equal  and therefore it can not be a symmetric stage 

equilibrium decision rule.   ∎ 

 

 

 

 

 

 

 

 

 

 

 


