Supplementary Table 1: Equations and initial values for dynamic compartmental transmission models

Compartment	Equation	Initial parameters for each strategy				
		No action Day 0 a	Pre-arrival testing Day 0 a	Phased reopening with pre-arrival testing		
				Susceptible (S)	$dS(t) = -\beta \times (A+I) \times S/N$	$S_0 = 6600$
Exposed (E)	$dE(t) = \beta \times (A+I) \times S/N - \sigma \times E$	$E_0 = 0$	$E_0 = 0$	$E_0 = 0$	$E_{30} + E_0$	$E_{60} + E_{0}$
Asymptomatic (A)	$dA(t) = (1 - \alpha) \times \sigma \times E - \phi \times A$	$A_0 = 150$	$A_0 = 15$	$A_0 = 5$	$A_{30} + A_0$	$A_{60} + A_0$
Symptomatic (I)	$dI(t) = \alpha \times \sigma \times E - \gamma \times I$	$I_0 = 0$	$I_0 = 0$	$I_0 = 0$	$I_{30} + I_0$	$I_{60} + I_{0}$
Isolation (Q)	$dQ(t) = \gamma \times I - \rho \times Q$	$Q_0 = 0$	$Q_0 = 0$	$Q_0 = 0$	$Q_{30} + Q_0$	$Q_{60} + Q_0$
Recovered (R)	$dR(t) = \phi \times A + \rho \times Q$	$R_0 = 750$	$R_0 = 750$	$R_0 = 250$	$R_{30} + R_0$	$R_{60} + R_0$

Models assume population size of N = 7500 and 2% active infection rate at semester start (day 0). S_j, E_j, A_j, I_j, Q_j, and R_j indicate the number of individuals in each compartment on day j (e.g., A₀ is the number of asytompatic individuals on day 0). Infectious individuals return to campus through compartment A. When no action is taken, the number of infected individuals on day 0 is given by A₀ = $N \cdot 0.02$. Pre-arrival testing assuming 90% test sensitivity yields A₀ = $N \cdot 0.02 \cdot 0.90$. Phased reopening with pre-arrival testing yields A₀ = $N \cdot 0.02 \cdot 0.90$, where $N \cdot 0.02 \cdot 0.90$ is the number of students returning to campus during the first phase.

^a Sum of compartments: 7500
 ^b Sum of compartments: 2500
 ^c Sum of compartments: 5000