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SUPPLEMENTARY INFORMATION 
 
Supplementary Note 
 
1   Imputation accuracy benchmarks 
 
To compare the accuracy of genotype imputation using the UK Biobank N=50K exome 
sequencing call set to the accuracy of the latest UK Biobank imputation release (imp_v3, which 
used the Haplotype Reference Consortium (HRC) and UK10K/1000G reference panels), we 
computed squared correlations between imputed genotype dosages and direct genotype calls 
from the UK Biobank genotyping array (on the full cohort) and from whole-exome sequencing 
(on N=50K samples). 
 
To benchmark the accuracy of the HRC+UK10K/1000G-based imp_v3 data set, we computed 
R2 between imp_v3 dosages and WES-based genotype calls at biallelic SNPs with very high 
genotyping rates in the WES call set (missingness<0.0005, indicating high confidence in the 
WES genotypes). We restricted this benchmark to N=46,476 exome-sequenced individuals who 
reported European ancestry. 
 
To benchmark imputation accuracy using the N=50K WES samples as a reference panel, we 
computed R2 between imputed dosages and array-based genotype calls at well-typed biallelic 
SNPs (which were not included in the imputation scaffold). We identified a subset of well-typed 
SNPs to use as a gold standard by requiring R2>0.999 concordance between the array-based 
and WES-based genotypes among the exome-sequenced individuals; we then benchmarked 
imputation R2 in the N=412,764 remaining (unsequenced) individuals of European ancestry. 
 
Restricting to a subset of well-typed SNPs was necessary to perform this benchmark because 
the UK Biobank genotyping array has imperfect accuracy, particularly for rarer SNPs1. For 
common SNPs, our requirement of R2>0.999 vs. WES (within the exome-sequenced cohort) 
was enough to ensure high genotyping accuracy for common and somewhat rare SNPs; 
however, for ultra-rare SNPs with MAF<0.0001 (i.e., MAC<10 among the WES cohort), an 
imperfectly typed SNP could still achieve perfect concordance within the WES cohort by chance 
(despite a non-negligible level of genotyping error in the rest of the cohort). This phenomenon 
should produce a slight downward bias in our imputation accuracy benchmark for very rare 
SNPs due to error in the array-based gold standard. Consistent with this expectation, when we 
further restricted our benchmark to a small subset of SNPs previously determined (by inspection 
of SNP cluster plots) to have high-quality array genotypes1, we observed evidence for a slight 
increase in estimated imputation accuracy (Supplementary Table 1), suggesting that our 
primary benchmark was indeed slightly conservative. 
 
Finally, for reference, we also benchmarked accuracy of the array-based genotypes against 
WES-based genotypes at high-confidence biallelic SNPs. As in our benchmark of the imp_v3 
data, we restricted to SNPs with WES missingness<0.0005 and computed R2 among N=46,476 
exome-sequenced individuals who reported European ancestry (Supplementary Table 1).



2 
 

2   Robustness of rare variant association analyses to population stratification 
 
Genome-wide association analysis of common and low-frequency variants using regression with 
genetic principal component (PC) covariates is generally accepted to be robust to population 
stratification2, and linear mixed model (LMM) analysis additionally corrects for confounding from 
sample relatedness3. However, the extent to which these now-standard approaches produce 
robust associations when used to analyze very rare variants is less well-understood, with some 
concerns arising from a key paper of Mathieson and McVean (2012)4 that simulated scenarios 
of extreme stratification in which rare variants escaped correction from analyses that used either 
PCs or LMMs. Recent work exploring subtle population structure in the UK Biobank cohort has 
also caused some general concern about potential uncorrected effects of stratification on 
epidemiological analyses5; however, this work focused on aggregate effects of common variants 
in analytical frameworks very different from rare variant association analysis. 
 
Given our focus on identifying very rare coding variants influencing quantitative traits, we 
revisited the theoretical basis for rare variant stratification that could escape PC/LMM correction, 
and we also performed additional supporting analyses to verify that our association results were 
robust to potential confounding structure. 
 
First, on a theoretical level, the type of population stratification necessary to produce false 
positive rare variant associations is very different from the type of stratification that confounds 
naïve common variant association analyses. The latter form of stratification commonly manifests 
as a weak correlation between genetic ancestry and environmental effects on a phenotype; 
when GWAS sample size is sufficiently large, such correlations create significant (false-positive) 
associations at ancestry-informative common variants. In contrast, rare variant stratification 
requires environmental effects that are both much stronger in magnitude and highly localized in 
a manner that matches geographical localization of rare alleles (because effect size estimates 
for rare variants have much wider error bars, so strong environmental deviations are needed to 
appreciably inflate significance). Indeed, Mathieson and McVean (2012) observed exactly this 
behavior: in the context of broad, smoothly varying environmental confounding – which is 
typically observed in GWAS – rare variants actually exhibited less confounding than common 
variants. The simulations that produced rare variant confounding involved sharp, highly 
localized effects in which mean phenotypes were locally shifted by 1 to 2 s.d. Such extreme 
effects (which would correspond to environmental effects that modify height by ~5 inches, for 
example) seem unlikely to exist for most phenotypes in most cohorts. Moreover, even if such 
strong, sharp stratification were to exist in UK Biobank, it would be ameliorated by geographical 
covariates (such as assessment center) that we included in our analyses. 
 
To confirm the above intuition, we repeated our association analyses using the same statistical 
approach (BOLT-LMM with covariates including 20 PCs and assessment center) but restricting 
to a genetically homogeneous, unrelated (at third-degree or closer) subset of 337,539 white 
British participants (with ancestry confirmed by principal component analysis6). While this subset 
of participants is not completely free of population structure, we reasoned that any effects of 
uncorrected confounding would at least begin to manifest as differences in analytical results 
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between our primary analyses (which included all 459,327 self-reported white individuals) and 
the restricted analyses. 
 
Across the 1,189 rare coding variant associations our primary analyses identified as likely-
causal, the key statistical properties of these associations – minor allele frequencies, estimated 
effect sizes, and P-values (adjusted for sample size) – were all extremely consistent between 
the full and restricted analyses. Nearly all variants had similar minor allele frequencies in the two 
sample subsets: only 9 variants (involved in 12 associations) exhibited >2-fold differences in 
MAF (Supplementary Fig. 3a). All 9 of these variants were enriched in the Ashkenazi Jewish 
population7, explaining their much lower allele frequencies in the white British sub-cohort, and 8 
of the 9 variants modified genes clearly related to the associated traits (GPT, ALPL, ABCA1, 
SCARB1, SHBG, PDZK1, and TUBB1). Across all associations, estimated effect sizes were 
highly consistent between the full and restricted analyses (R2 = 0.985), showing no evidence of 
diminished effects within the restricted cohort (regression slope = 1.00 (0.99 – 1.01); 
Supplementary Fig. 3b) (which would be expected if some associations were driven by 
confounding structure). Association P-values were also highly consistent between the full and 
restricted analyses (R2 = 0.998 for –log10 P-values), with most associations (79%) still reaching 
genome-wide significance (P < 5 x 10-8) in the restricted cohort and nearly all associations 
(94%) reaching P < 3 x 10-6, the sample-size-adjusted threshold corresponding to our P < 5 x 
10-8 threshold in the full cohort (Supplementary Fig. 3c). 
 
We further assessed the extent to which likely-causal rare coding variants exhibited 
geographical localization by comparing the birth coordinate distributions of carriers of likely-
causal rare coding variants to the birth coordinate distributions of carriers of rare coding variants 
from an allele-frequency-matched distribution of “background variants” (Methods). We 
determined that likely-causal rare coding variants were no more geographically localized than 
background variants (Supplementary Fig. 4): among likely-causal variants, the mean of the 
standard deviation of east (respectively, north) birth coordinates of carriers was 75.6 km 
(respectively, 151.2 km), which almost exactly matched the corresponding measures of 
geographical localization for the allele-frequency matched background variants (75.7 km and 
150.6 km, respectively). 
 
Together with our replication analyses showing that the effect signs of associations we identified 
replicated in previous exome array data sets (Supplementary Table 4), these lines of evidence 
indicate that our rare variant association analyses were robust to effects of sample structure. 
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3   Identification of additional independently-associated rare coding variants in genes 
containing multiple likely-causal variants 
 
In each gene in which our primary analysis pipeline identified multiple likely-causal rare coding 
variants for a trait, we searched for additional rare protein-altering variants that did not reach the 
stringent significance thresholds used in our primary analyses but nonetheless exhibited good 
evidence for being trait-altering. As summarized in Methods, this secondary analysis pipeline 
involved two runs of FINEMAP followed by evaluation of statistical significance at an FDR<0.05 
threshold. The details of these steps are as follows. 
 

1. Run a first round of FINEMAP on (i) common and low-frequency (MAF>0.001) 
HRC/UK10K-imputed variants within 1Mb of the gene that associated with the trait at 
genome-wide significance; together with (ii) all WES-imputed coding variants in the gene 
(with no restrictions on CADD or significance). We allowed FINEMAP to select up to 15 
causal variants (to keep computational cost reasonable; the largest job took ~10h and 
~90GB RAM). This round of analysis was primarily intended to identify a subset of 
variants that captured the bulk of the common variant association signal so that we could 
evaluate rare coding variant association signals after conditioning on these variants (in 
round 2 below). Round 1 also sometimes identified rare coding variant associations that 
clearly become non-significant after conditioning on other variants (i.e., P>0.05 in the top 
configuration in which the variant appeared); these variants were flagged to drop from 
round 2.  
 

2. Run a second round of FINEMAP on (i) putatively causal variants selected from round 1; 
together with (ii) non-dropped WES-imputed coding variants (with no restrictions on 
CADD or significance), using stepwise conditional analysis (FINEMAP --cond instead of 
--sss) and using a flat prior on whether or not variants are causal (via --prior-k). The top 
configuration in the output of this analysis represented a series of conditionally 
independent associations, and the joint-model betas and standard errors for this 
configuration provided conditional P-values for variants in this series. 
 

3. To determine which variants pass FDR<0.05, compute q-values for all WES-imputed 
coding variants for the gene after (i) setting the P-value of each variant in the 
configuration to the maximum of its conditional P-value and original (marginal) P-value 
(to be conservative); and (ii) setting the P-value of each variant not in the top 
configuration to 1 (since these variants were eliminated from consideration for causality). 
Because most allelic series involved variants with trait-modifying effects predominantly in 
one direction (either positive or negative), we assessed FDR<0.05 independently for 
variants with effects in each direction (so as not to allow the existence of many 
associations in one direction to reduce the significance threshold for associations in the 
opposite direction).  
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Supplementary Figure 1. Most likely-causal rare coding variant associations identified by 
whole-exome imputation in UK Biobank were not in the GWAS Catalog. For each trait, we 
tabulated whether each likely-causal variant was previously reported in the NHGRI-EBI GWAS 
catalog as associated with any trait (so as to be maximally conservative with respect to the 
possibility that trait names in the GWAS Catalog might differ from those in UK Biobank).  
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Supplementary Figure 2. Magnitudes of effect sizes of likely-causal rare coding variants 
generally increase with decreasing minor allele frequency. Gray dots represent the full set 
of 1,189 likely-causal coding associations with red dots highlighting this trend for specifically (a) 
height, (b) all blood traits, (c) all biochemistry traits, and (d) all lipid traits.  
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Supplementary Figure 3. Rare variant association tests using linear mixed models show 
no evidence of confounding from sample structure within UK Biobank. (a) Allele 
frequencies, (b) effect size estimates, and (c) association P-values are all highly consistent 
between our primary analyses, which included all N=459,327 UK Biobank participants of 
European ancestry, and analyses restricted to a subset of N=337,539 unrelated British 
participants. The only notable outliers were a few very rare variants found much more frequently 
in Ashkenazi Jewish individuals than the rest of the UK Biobank cohort; nearly all of these 
variants affected genes known to be relevant to the associated traits (Supplementary Note). 
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Supplementary Figure 4. Likely-causal rare coding variants are no more geographically 
localized than allele frequency-matched background variants. For each likely-causal 
variant, and for a MAF-matched set of background variants, we computed the standard 
deviation of east (respectively north) birth coordinates among carriers of the rare allele. The 
plotted histograms compare birth coordinate variation between likely-causal variants vs. 
background variants, stratified by MAF range: (a,b) 0.1% < MAF < 1%, (c,d) 0.01% < MAF < 
0.1%, and (e,f) 0.001% < MAF < 0.01%. Both likely-causal and background variants exhibit the 
expected trend of decreasing birth coordinate variation (i.e., increasing geographical 
localization) with decreasing minor allele frequency.  
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Supplementary Figure 5. Measures of deleteriousness among protein-altering variants 
increase modestly with decreasing minor allele frequency. (a) CADD score. (b) predicted 
protein alteration from VEP or SpliceAI (for cryptic splice sites). Distributions are across all 
protein-altering variants present in the UKB N=50K whole-exome sequencing genotype call set 
with European minor allele frequencies within the indicated tranches. Error bars, 95% CIs. 
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Supplementary Figure 6. Concordance in effect directions of rare coding variants within 
the same gene. Gene-trait pairs were stratified by the number of independent rare coding 
variant associations identified (in follow-up analyses that relaxed the significance threshold to 
Bonferroni-adjusted P<0.05, correcting for the number of coding variants within each gene; 
Methods); these strata are indicated in the x-axis of the figure. Across gene-trait pairs with an 
allelic series of a given length, we computed the average fraction of variants with effect 
directions in the majority effect direction. For this assessment we analyzed allelic series 
determined using a Bonferroni-adjusted P<0.05 significance threshold rather than FDR<0.05 
(which we had applied independently to determine significance thresholds for variants in each 
gene with positive vs. negative effects) to avoid bias in directional concordance due to differing 
significance thresholds for positive vs. negative effects. 
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Supplementary Figure 7. Allelic series of trait-associated rare coding variants in GOT1, 
ANGPTL3, PLIN1, and PLA2G12A. Statistically independent associations (reaching FDR<0.05 
significance) for: (a) GOT1 and aspartate aminotransferase, (b) ANGPTL3 and triglycerides, (c) 
PLIN1 and HDL cholesterol, and (d) PLA2G12A and apolipoprotein A. Top, protein structures 
with altered amino acids (modified by missense variants) color-coded by effect direction (red for 
trait-increasing variants and blue for trait-decreasing variants). Bottom, per-variant effect sizes 
(error bars, 95% CIs) and allele frequencies. Protein structures were previously determined 
experimentally (for GOT1 and ANGPTL3). The structure for GOT1 represents a homodimer and 
for ANGPTL3 a homotrimer of the fibrinogen-like domain only.  
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Supplementary Figure 8. Single-variant association analysis discovers likely-causal rare 
coding variants in genes not identified by gene burden analysis. For each trait, genes 
containing at least one likely-casual rare coding variant were tabulated according to whether or 
not they reached significance in a gene burden analysis using filtering criteria of CADD ³ 20 and 
MAF £ 0.01 for inclusion of variants in the burden test. 


