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S1. Method 

 
In this Section, we provide a detailed description of the reduced form econometrics model considered in 

our analysis. The model is derived from Susceptible-Infectious-Recovered (SIR) epidemiology models.  
 

S1.1 SIR Growth Rate Model 

 

Similar to the work by Hsiang et al [1], we employ a reduced form econometrics technique that relates the 

growth rate of active COVID-19 cases to the individual and institutional measures such as masks, social 

mobility and governmental Non-Pharmaceutical Interventions (NPIs). Growth rate in econometrics is 

defined as the first difference in log of economic outputs in different time periods. The growth rate model 

is a well-established method in econometrics where growth rates of economic output can be affected by 

different factors e.g. policy. Similar to economic output, we model the growth rate of daily active cases 

and estimate how it is affected by wearing masks in public spaces, social mobility and NPIs. The method 

also has roots in epidemiology models – SIR (Susceptible, Infection, Recover).    We do not consider 

deaths and reinfection in our analysis. 

 

Equation S1-S4 describe the SIR model where 𝑆𝑗,𝑡, 𝐼𝑗,𝑡 , 𝑅𝑗,𝑡 show the active susceptible, infectious and 

recovered population at time 𝑡 in country 𝑗. 𝛽𝑗 is the rate of transmission and 𝛾𝑗 is the rate of recovery in 

country 𝑗. Since we do not consider reinfection and deaths, 𝛾𝑗 can be considered as the rate of removal 

from infectious population.  𝑁𝑗 is the total population of the country 𝑗. Equation S1 shows how infections 

spread from the infectious individuals to susceptible individuals. Equation 2 shows how infectious 

population changes over time as some susceptible individuals contract the disease while some already 

infectious individuals recover from the disease and test negative. Equation S3 shows how the number of 

recovered individuals increase over time as individuals recover after testing negative for the virus. 

Equation S4 is a feasibility constraint which ensures that the total population is accounted for in the 

model. Addition of Equations S1 – S3 yields Equation S4. 

 
𝑑𝑆𝑗,𝑡

𝑑𝑡
=

𝛽𝑗𝐼𝑗,𝑡𝑆𝑗,𝑡

𝑁𝑗
                                               (S1) 

 
𝑑𝐼𝑗,𝑡

𝑑𝑡
=

𝛽𝑗𝐼𝑗,𝑡𝑆𝑗,𝑡

𝑁𝑗
− 𝛾𝐼𝑗,𝑡                                    (S2) 

 
𝑑𝑅𝑗,𝑡

𝑑𝑡
= 𝛾𝑗𝐼𝑗,𝑡                                                       (S3) 
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𝑑𝑆𝑗,𝑡

𝑑𝑡
+

𝑑𝐼𝑗,𝑡

𝑑𝑡
+

𝑑𝑅𝑗,𝑡

𝑑𝑡
= 0                      (S4) 

 

 

Since we model only the growth rate in the total confirmed cases, we consider Equation S2 in our 

analysis. Assuming 𝑆𝑗,𝑡 ≈ 𝑁𝑗, we can rewrite Equation S2 as shown in Equation S5. It can be solved by 

integration as shown in Equation S6. If we consider daily growth rate (𝑡2 − 𝑡1 = 1), Equation S6 can be 

simplified as shown in Equation S7, where 𝑔𝑗 is the growth rate and it is given by 𝛽𝑗 − 𝛾𝑗.  

 
𝑑𝐼𝑗,𝑡

𝑑𝑡
= (𝛽𝑗 − 𝛾𝑗) 𝐼𝑗,𝑡                                        (S5) 

∫
𝑑𝐼𝑗,𝑡

𝑑𝑡

𝑡2

𝑡1

= log(𝐼𝑗,𝑡2
) − log(𝐼𝑗,𝑡1

) = (𝛽𝑗 − 𝛾𝑗)(𝑡2 − 𝑡1)                (S6) 

 

log(𝐼𝑗,𝑡) − log(𝐼𝑗,𝑡) =  𝑔𝑗                              (S7) 

 

Wearing face masks, reducing social mobility and implementation of NPIs can alter the growth rate by 

changing 𝑔𝑗. We consider a common 𝛽 ∀𝑗 instead of solving Equation S8 individually for countries. We 

include country fixed effects (𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠𝑗) to account for country specific heterogeneity in 𝑔𝑗. Growth 

rate can be modeled as shown in Equation S8 (𝑃 is set of policies; 𝑀 is the set of indicators of social 

mobility, W is set of weeks during the period of our analysis and 𝐽 is the countries in our analysis). 

𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑗,𝑡,𝑚 is the 𝑚𝑡ℎindicator for social mobility,  𝑤𝑒𝑒𝑘𝑗,𝑡,𝑤 = 1 if day 𝑡 in country 𝑗 is in week 𝑤 

after the initialization point for country 𝑗. To account for other factors, we consider several control 

variables (e.g. testing, Google Trends, fixed effect for week) as we discuss in the next section.  

 

𝑔𝑗,𝑡+𝑠ℎ𝑖𝑓𝑡 = 𝜃0 + 𝜃𝑚. 𝑚𝑎𝑠𝑘𝑗,𝑡 + ∑ 𝜃𝑝𝑝𝑜𝑙𝑖𝑐𝑦𝑗,𝑡,𝑝

𝑝∈𝑃

+ ∑ 𝜃𝑚𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑗,𝑡,𝑚

𝑚∈𝑀

+ 𝜃𝑒 . 𝑡𝑒𝑠𝑡𝑖𝑛𝑔𝑗,𝑡 

+ ∑ 𝜃𝑤𝑤𝑒𝑒𝑘𝑗,𝑡,𝑤

𝑤∈𝑊

+ 𝜃𝑟. 𝑡𝑟𝑒𝑛𝑑𝑗,𝑡 + ∑ 𝜃𝑗𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠𝑗

𝑗∈𝐽

+ 𝜖𝑡               (S8) 

 

We use government announcements on health resources, health monitoring, health testing and tests 

conducted (per thousand individuals) to account for increased awareness and testing over time. We also 

use Google Trends on a keyword coronavirus to account for public self-awareness. We discuss NPIs, 

Testing and Google Trends later. 

 

The econometrics approach of using the growth rate to estimate the effects of masks, social mobility and 

NPIs has several advantages. The model can estimate the effect of change in the exogenous independent 

variables on the dependent outcome variable (growth rate). Since right hand side of Equation S5 can be 

empirically calculated, it does not explicitly require the knowledge of relationship between exogenous 

variables and 𝐼𝑗,𝑡. Thus, the model does not need to know the link between masks, NPIs and social 

mobility on daily active cases (or cumulative conformed cases) but can still estimate their effect on the 

growth rate of infectious cases. Using the growth rate, 𝐼𝑗,𝑡   can be estimated by integrating it from time 

period 0 (or using previous integration up to day 𝑡 − 1). Thus, this model is a forward-looking model.  

 

The model is also able to handle underreporting in COVID-19. In COVID-19 pandemic, data for an 

individual is recorded only when they are tested. Total confirmed cases (deaths and recovered cases) in 

publicly available datasets only provides information on the individuals who got themselves tested. Due 

to various reasons e.g. lack of testing, lack of motivation to get tested or lack of visible symptoms in 
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symptomatic cases, it is being estimated that there is a massive underreporting in total confirmed positive 

cases. However, the growth rate model is agnostic to underreporting as it models the first difference in the 

log of confirmed cases. If the underreporting remains constant, 𝐼𝑗,𝑡 and 𝐼𝑗,𝑡−1 can be multiplied with a 

constant over the time period considered and it would not affect our estimation of growth rate (Equation 

S5).  

 

Multiple studies have reported delays between the association of policies with COVID-19 spread [1]. This 

delay could be due to several reasons. One of the most commonly noted reasons is the incubation period 

(time between getting infected and onset of symptoms/knowing that individual is confirmed for COVID-

19). During the incubation period, an individual may be asymptomatic. Incubation period is estimated to 

be 4 days to 14 days [2]. Another reason could be the testing time – time it takes to get the confirmation 

of results.  To model this delay, we use a lag variable. We use cross validation method to find the lag with 

the best fit for the data. We test and observe that the model performs best at a lag of 9 days.  

 

 

S1.2 Robustness and Control Function Models 

 

Robustness Model: As a robustness check to the growth rate model discussed above, we also use an 

exponential smoothing model to estimate the effect of masks, social mobility and NPIs to validate the 

results from the base model in Equation S9. In this model, we use exponentially smoothed data for right 

hand side of Equation S8 for the past 𝑤 days, without using the 𝑙𝑎𝑔 variable. It can be written as shown 

in Equation S10 where < 𝑥 >𝑤 is exponentially smoothed over the last 𝑤 days. Smoothing function is 

shown in Equation S11. This method considers data in the recent future of day 𝑡 instead of considering all 

the data leading up to day 𝑡 or data observed 𝑙𝑎𝑔 days before as in the growth rate model in Equation S9. 

This model is analogous to counting the number of days in which a policy was active in the past 𝑤 days. 

We use exponential smoothing to include the lag effect of masks, NPIs and mobility on the growth rate.  

 

𝑔𝑗,𝑡+𝑠ℎ𝑖𝑓𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝜃0 +< 𝜃𝑚. 𝑚𝑎𝑠𝑘𝑗,𝑡 >𝑤+ ∑ 𝜃𝑝 < 𝑝𝑜𝑙𝑖𝑐𝑦𝑗,𝑡,𝑝>𝑤

𝑝∈𝑃

+ ∑ 𝜃𝑚 < 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑗,𝑡,𝑚 >𝑤

𝑚∈𝑀

 

+𝜃𝑒 < 𝑡𝑒𝑠𝑡𝑖𝑛𝑔𝑗,𝑡 >𝑚+ ∑ 𝜃𝑤𝑤𝑒𝑒𝑘𝑗,𝑡,𝑤

𝑤∈𝑊

+ 𝜃𝑟 < 𝑡𝑟𝑒𝑛𝑑𝑗,𝑡 >𝑤+ ∑ 𝜃𝑗𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠𝑗

𝑗∈𝐽

+ 𝜖𝑡  (S9) 

 

< 𝑥 >𝑤=
∑ 0.8𝑤−𝑙𝑥𝑡−𝑤

𝑤
𝑙=1

∑ 0.8𝑤−𝑙𝑤
𝑙=1

                          (S10) 

 

Figure S1 shows the idea behind the exponentially smoothed model. In the growth rate model, we give 

importance to events that happened at a lag of 𝑠ℎ𝑖𝑓𝑡 days. Thus, on day 𝑡, we assign 0 weights to data 

from 𝑡 − 𝑠ℎ𝑖𝑓𝑡 + 1 to 𝑡. In exponentially smoothed model, we assign an exponentially reducing but non-

zero weights to data for days 𝑡 − 𝑠ℎ𝑖𝑓𝑡 + 1 to 𝑡. 
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Figure S1. Weights given to different data points for two models – growth rate model in Equation S9 (red) and exponentially smoothed growth 

rate model (blue) in Equation S10. Exponentially smoothed growth rate model consider all the data points in recent history to day 𝑡 instead of 

considering the events only on day 𝑡 − 𝑠ℎ𝑖𝑓𝑡. Weights decrease as we move closer to day 𝑡 to incorporate the delay in observing the effect of 

events in the recent future.  

 

Control Function Model: We also consider a control function approach to check the robustness of the 

mask parameter from Equation S8. Countries have had different experiences with air borne diseases due 

to multiple outbreaks in the past e.g. Severe Acute Respiratory Syndrome (SARS), Middle East 

Respiratory Syndrome Coronavirus (MERS-CoV) and H1N1 Influenza (Swine Flu). Countries with 

severe outbreak of these air-borne virus were quick to adopt to wearing face masks in public. This could 

potentially confound with the effect of mask discussed in this paper. So, we use a control function 

approach to isolate the effect of masks. Since the growth rate in COVID-19 is independent of number of 

deaths per thousand people from SARS, MERS and H1N1, it may affect the percentage of population 

with mask wearing 𝑚𝑎𝑠𝑘𝑗𝑡 but does not affect the growth rate. This allows us to use deaths from previous 

diseases as a control function. Total deaths per thousand people for different countries is given in Figure 

S2. 

 

 
Figure S2. Logarithm of number of confirmed deaths with SARS, H1N1 and MERS-CoV per thousand people across 24 countries considered in 

this study. 

 

In the control function model, we first predict average mask wearing in country j 𝑚𝑎𝑠𝑘𝑗
̂  using the number 

of deaths from SARS, H1N1 and MERS in country 𝑗 as covariates in ordinary least square linear 

regression estimation. We use 𝑑𝑗,𝑑𝑖𝑠 where 𝑑𝑖𝑠 ∈ {𝑆𝐴𝑅𝑆, 𝐻1𝑁1, 𝑀𝐸𝑅𝑆} as predictor variable where 𝑑 is 

the number of deaths per thousand people in country 𝑗.  Specifically we use, 𝑑𝑗,𝑑𝑖𝑠 = 1 |𝑑𝑗,𝑑𝑖𝑠 >

𝑚𝑒𝑑𝑖𝑎𝑛(𝐷𝑑𝑖𝑠) for deaths per thousand people in country 𝑗. The model to predict 𝑚𝑎𝑠𝑘𝑗,𝑡 is shown in 

Equation S12. After estimating 𝑚𝑎𝑠𝑘𝑗,𝑡
̂ , we use the error 𝑚𝑎𝑠𝑘𝑗,𝑡 − 𝑚𝑎𝑠𝑘𝑗

̂  in Equation S9 as a covariate. 

Control function model is shown in Equation S13.  
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𝑚𝑎𝑠𝑘𝑗
̂ = 𝑑𝑗,𝑆𝐴𝑅𝑆 + 𝑑𝑗𝐻1𝑁1 + 𝑑𝑗,𝑀𝐸𝑅𝑆 + 𝜖𝑚                (S11) 

 

𝑔𝑗,𝑡+𝑠ℎ𝑖𝑓𝑡 = 𝜃0 + 𝜃𝑚. 𝑚𝑎𝑠𝑘𝑗,𝑡 + ∑ 𝜃𝑝𝑝𝑜𝑙𝑖𝑐𝑦𝑗,𝑡,𝑝

𝑝∈𝑃

+ ∑ 𝜃𝑚𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑗,𝑡,𝑚

𝑚∈𝑀

+ 𝜃𝑒 . 𝑡𝑒𝑠𝑡𝑖𝑛𝑔𝑗,𝑡 

+ ∑ 𝜃𝑤𝑤𝑒𝑒𝑘𝑗,𝑡,𝑤

𝑤∈𝑊

+ 𝜃𝑟. 𝑡𝑟𝑒𝑛𝑑𝑗,𝑡 + ∑ 𝜃𝑗𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠𝑗 + 𝜃𝑚𝑑(𝑚𝑎𝑠𝑘𝑗,𝑡 − 𝑚𝑎𝑠𝑘𝑗)̂

𝑗∈𝐽

+ 𝜖𝑡              (S12) 

 

 

Wearing face masks in public is common in many Asian countries, as compared to countries in Europe or 

America [3, 4]. One of the reasons is due to recent experience with air borne diseases. Another reason 

could be air pollution or a culture of wearing face masks. We do not account for the different trends in 

wearing face masks among countries due to pollution or culture. However, we believe the country fixed 

effects could capture the country wise trends in wearing face masks. 

 

S2. Data Collection and Processing 
 

We model the effect of wearing face masks, change in social mobility and government enforced Non-

Pharmaceutical Interventions (NPIs) in the growth rate of infection. We select the countries with publicly 

available dataset for wearing face masks and community mobility. We collect data from February 21, 

2020 to July 8, 2020. In this Section, we discuss the different datasets used in our analysis to isolate the 

effect of masks, social mobility and NPIs in the spread of the contagious SARS-CoV-2 (COVID-19 

virus). 

 

S2.1 Masks 

 

We collect mask data from surveys conducted by YouGov [5]. YouGov is an international internet based 

market research company which specializes in opinion polls through online methods. YouGov used 

online surveys as their COVID-19 behavior change tracker. They conducted surveys periodically in some 

countries of the world to estimate the propensity of the percentage of people that wear face masks when 

they go out in public spaces. These surveys were conducted every week. Figure S3 shows the raw survey 

numbers from YouGov. As the surveys were conducted periodically and not every day, we use monotonic 

cubic splines to estimate the percentage of population that wear face masks in public spaces (Figure S4). 

Note that the online survey does not include data for type (quality) of masks or how people wear masks 

(insufficient quality or incorrect method of covering face masks e.g. touching the surface, not covering 

nose or mouth -- might not be effective in controlling the spread of virus). Thus, our estimation for effect 

of masks in this work would be an estimation of the behavior of wearing masks. In our analysis, we 

normalize the number for mask wearing such that 0 ≤ 𝑚𝑎𝑠𝑘𝑗𝑡 ≤ 1, ∀𝑗, ∀𝑡. 
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Figure S3. Raw data for surveys on percentage of people who say they wear a face mask when in public spaces. The dots represent the raw 

numbers from the survey data from YouGov. The lines are shown for better visualization.  

 

 
Figure S4. Survey data on percentage of people who say they wear a face mask when in public spaces. We use linear interpolation to consider 

mask numbers for days between surveys days. The dots represent the raw numbers from surveys. 

 

S2.2 Active Cases 

 

We use the timeline for total confirmed cases and total recovered cases from Johns Hopkins Coronavirus 

Research Center [6] to find the daily active cases across different countries. We use the daily active cases 

to calculate the outcome variable of our model -- growth rate. Cumulative confirmed cases, Cumulative 
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recovered cases and daily active cases for different countries is shown in Figure S5. We use a 7-day 

moving for daily cumulative confirmed cases and cumulative recovered cases. 

 

 
Figure S5. Cumulative confirmed cases, cumulative recovered cases and daily active cases across 24 countries. We observe data reporting issues 

in Norway, Sweden and United Kingdom. For these countries, we use cumulative confirmed cases for calculating the growth rates. 

 

S2.3 Growth Rate 

 

We use daily active cases to estimate the daily growth rate for these countries. Growth Rate (Equation S8) 

can be very volatile at the start of the pandemic due to the low number of cases in the early stages. For 

example, a unit increase in 𝐼𝑗𝑡 will record a growth rate of 0.4 when 𝐼𝑗𝑡 = 2 as compared to a growth rate 

of 0.0004 when 𝐼𝑗𝑡 = 1000 (growth rate is calculated as the first difference in log of active cases in 

consecutive days). Similarly, during the later stages of the pandemic (at least when the first wave is 

slowed down for some countries), growth rate could be affected by multiple other factors such as 

awareness or changed individual behavior. To avoid these issues, we use the data for first 60 days for a 

country (after we start collecting data for a country following the ‘th’).  

 

Unlike Hsiang et al. [1], we use data for 60 days and do not restrict to the initial phase when the cases rise 

exponentially. In §Robustness check, we discuss the performance of the model (and changes in model 

parameter estimates) as we add more/less data in the model from 24 countries. To filter out the volatile 

growth rate during the start of the pandemic, we consider data for each country when the daily new cases 

cross a threshold 𝑡ℎ. We define this threshold, as the day when the 7 day average of daily new cases in a 

country crosses 𝑡ℎ =20% of the peak case observed in that country (till July 8, 2020). We  select 𝑡ℎ based 

on maximum likelihood estimate of the growth rate model (mechanism for the selection of 𝑡ℎ is discussed 

later in the Section on §Robustness Check). Figure S6 shows the daily new cases. Figure S7 shows the 

respective growth rate. Since we use data for a maximum of 60 days for a country, from the day its daily 

cases cross the threshold. Thus, our dataset contains an unbalanced panel data from 24 countries. 
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Figure S6. Daily New Cases. The green line marks the day when daily new cases in that country crossed the threshold. Brown line shows the end 

of 60 days of data collected for each country. For countries where cases are still increasing vis-à-vis India and Philippines, we collected fewer 

data points than 60 days.   

 

 
Figure S7. Growth rate across Countries. The green line marks the day when daily new cases in that country crossed the threshold. Brown line 

shows the end of 60 days of data collected for each country. We use cumulative confirmed cases to calculate growth rate for Norway, Sweden 
and United Kingdom. Collecting data after the green line allows us to filter initial noisy growth rate from that country. 
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S2.4 Community Mobility 

 

Google’s COVID-19 Community Mobility Reports [7] provides information on how movement trends 

change over time across different types of locations in different countries. The mobility numbers are 

calculated based on the change in trend from the baseline (details in the report on how Google calculates 

the baseline). The report tracks movement trends over time by geography, across different categories of 

places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and 

residential. Figure S8 shows the community mobility across different countries.  

 

We observe high correlation between the social mobility numbers from Google across different types of 

locations. This may lead unstable parameter estimates due to multicollinearity in parameter estimation 

using ordinary least squares. Based on the correlations, we consider the mobility in Parks and Transit 

stations as our measure for mobility. We also confirm these two categories using a Lasso regression 

(more details in Section §Robustness Check in Section 4.5.3). The Lasso regression model pushes the 

coefficients of correlated variables (variable which do not add much information to the model) to 0 and 

gives non-zero weights to only two of the mobilities: Parks and Transit stations. 

 

The correlation matrix between the mobility across different locations is shown in Table S1. The 

correlation matrix shows that transit stations is highly correlated with mobility in Retail and Recreation, 

Grocery and Pharmacy and Residential. Mobility in transit stations is negatively correlated with mobility 

in Residential as – fewer people travel indicates establishes that more people are staying home. Thus, 

mobility in transit stations is able to capture the information from mobility across all other locations 

except Parks. Henceforth, we include mobility in Parks and Transit stations as a measure of mobility (and 

as also selected by Lasso Regression model). In our analysis, we normalize the number for social mobility 

such that 0 ≤ 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑗,𝑡,𝑚 ≤ 1 ∀𝑗, ∀𝑡, ∀𝑀. 
 

Table S1. Correlation Matrix for Community Mobility in Different Locations 

  
Retail and 

Recreation 

Grocery and 

Pharmacy 

Parks Transit 

Stations 

Workplace Residential Driving Walking 

Retail and Recreation 1.00 0.85 0.53 0.90 0.75 -0.85 0.81 0.82 

Grocery and Pharmacy 0.85 1.00 0.45 0.78 0.67 -0.74 0.69 0.67 

Parks 0.53 0.45 1.00 0.42 0.16 -0.51 0.73 0.67 

Transit Stations 0.90 0.78 0.42 1.00 0.84 -0.89 0.73 0.78 

Workplace 0.75 0.67 0.16 0.84 1.00 -0.87 0.53 0.58 

Residential -0.85 -0.74 -0.51 -0.89 -0.87 1.00 -0.74 -0.75 

Driving 0.81 0.69 0.73 0.73 0.53 -0.74 1.00 0.91 

Walking 0.82 0.67 0.67 0.78 0.58 -0.75 0.91 1.00 

 

 

Summary statistics for the community mobility is shown in Table S2.  

 
Table S2. Summary Statistics on Mobility Trends from Google 

 

Mobility Min Mean Max Std Dev 25th percentile 75th percentile 

Retail and Recreation -96 % -32.3 % 23 % 27.1 % -53 % -10 % 

Grocery and Pharmacy -94 % -10.1 % 51 % 18.7 % -19 % 2 % 

Parks -91 % 4.7 % 517 % 65.5 % -38 % 24 % 

Transit Stations -92 % -38.8 % 14 % 23.9 % -57 % -20 % 

Workplaces -90 % -27.7 % 57 % 23.8 % -45 % -7 % 

Residential -13 % 12.8 % 55 % 10.4 % 4 % 19 % 
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Figure S8. Community Mobility Trend from Google using Android Operating System. 

 

Google community mobility reports uses data from users with android operating system. Also, they 

collect data from users who allow location sharing (Google does not disclose any personal information in 

Community Reports). To check the robustness of the model and our estimates on the effect of mobility, 

we also use mobility data from Apple Mobility Trend reports [8] to validate the results from Google 

Community Mobility reports. The Apple Mobility reports show a relative volume of directions requests 

per country/region, sub-region or city compared to a baseline volume on January 13th, 2020. Apple 

compares the relative volume for Driving, Transit and Walking in their dataset. However, we could not 

find the data on Transit for all the 24 countries considered in this paper. So we use timeline for Driving 

and Walking as a proxy for measuring social mobility. Table S3 provides the summary statistics on Apple 

Mobility Trends. The mobility trends for Driving and Walking across 24 countries is shown in Figure S9.  

 
Table S3. Summary Statistics on Mobility Trends from Apple 

Mobility Min Mean Max Std Dev 25th percentile 75th percentile 

Driving -100 % -28.2 % 184 .9% 48.5 % -64.9 % -6.2% 

Walking -100 % -35.7 % 94.4 % 44.1 % -72 % 0.58 % 
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Figure S9. Community Mobility Trend from Apple using iOS 

 

S2.5 Non-Pharmaceutical Interventions (NPIs) 

 

Governments (and its policies) play a critical role in fighting a pandemic. Vaccines may take a long time 

to be available, particularly for a new disease e.g. COVID-19. In an ongoing pandemic, we cannot depend 

only on the vaccines but need strong government interventions (institutional measures) to control the 

spread of the disease. During such times, governments must take various measures e.g. increasing testing 

infrastructure to control the spread of infections. These NPIs help in decreasing mobility (for example 

travel bans imposed restriction on travel across states/ regions/ countries while it also helped in restricting 

mass gatherings in places such as transit stations. Since COVID-19 spreads through person to person 

physical interaction (or prolonged proximity), governments introduced various policies (Non-

Pharmaceutical Interventions or NPIs) for social distancing to minimize person-to-person interaction. 

They also introduced closures of places where people gather together at the same time e.g. schools or 

businesses. However, these government policies seriously affected businesses [9], leading to economic 

shutdowns which adversely affecting the poor community [10].  The effect of these shutdowns may also 

lead to prolonged economic hardships e.g. closure of some businesses and employment [11].  

 

Since these policies directly affect the livelihood of a majority of the population across the world, it is 

important to investigate the impact they have on controlling the spread of the disease. As these policies 

were implemented at different times across different countries, it gives us an opportunity to explore the 

combined effect of these policies. Estimating the combined effect of these policies could help the 

governments in future (or current) pandemics to introduce policies that are effective and may not 

necessarily lead to complete lockdown unless extremely necessary. Please note that some of these policies 

were introduced at the same time, or some of the policies were implemented first and some of the policies 

were implemented always after some other policy were implemented, we do not claim any causal effect 

of the policy on the growth rate. It is difficult to isolate the effect of individual policies as the 

implementation of policies were not randomly sequenced across countries. 
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We use Coronanet dataset from Cheng at al [12]. They collected information on all the government 

policies introduced by different countries across the world. They categorized the policies into 19 different 

policy_types. We use their categorization to build our model. The policies were implemented at different 

levels – National, Provincial and Municipal. In this work, we consider the policies implemented at 

National and Provincial level. From February 21, 2020 to July 8, 2020, we check if a policy 𝑝 was 

implemented in a country 𝑗 or not on day 𝑡. If the policy was implemented, we assign a value of 1 to 𝑠𝑗,𝑡,𝑝. 

If the policy was introduced at a provincial level (could be introduced by the central government or a 

respective state government), we increase 𝑠𝑗,𝑡,𝑝 by the population of the state. Equation S13 explains 𝑠𝑗𝑡𝑝 

if a policy 𝑝 is employed at a provincial level where 𝑁𝑗𝑠
⏞  is the population of state 𝑠 in country 𝑗. After 

identifying 𝑠𝑗,𝑡,𝑝for all countries over the period of our analysis (considering all the entries in the dataset), 

we use normalization using maximum value in a country such that 𝑠𝑗,𝑡,𝑝 ∈ [0,1] ∀𝑗, ∀𝑡, ∀𝑝 as shown in 

Equation S13..   

 

𝑠𝑗,𝑡,𝑝 =  𝑠𝑗,𝑡,𝑝 +
𝑁𝑗𝑠
⏞

𝑁𝑗𝑠
⏞ + 𝑁𝑗

                    (S13) 

 

 

𝑠𝑗,𝑡,𝑝 =  
𝑠𝑗,𝑡,𝑝

max
𝑡,𝑝

𝑠𝑗,𝑡,𝑝
                               (S14) 

 

The dataset contains 5816 entries on policies (some of the policies were announcements/ 

recommendations/ new entry or an update to existing policy) at National and Provincial level. The dataset 

provides detailed information on the type of the data entry (e.g. policy type, description of the policy). 

The statistics on the types of policies is shown in Figure S10. Figure S10 also provides a count of entries 

of each policy type. The data set contains 20 𝑝𝑜𝑙𝑖𝑐𝑦_𝑡𝑦𝑝𝑒𝑠. Figure S10 shows how many countries 

implemented (light grey bars) a particular 𝑝𝑜𝑙𝑖𝑐𝑦_𝑡𝑦𝑝𝑒. It also shows how many countries implemented a 

particular 𝑝𝑜𝑙𝑖𝑐𝑦_𝑡𝑦𝑝𝑒 at national or provincial level (light blue bars and dark blue bars respectively). 

The dark grey bars show the total number of entries (divided by 100 for visualization) for all 

𝑝𝑜𝑙𝑖𝑐𝑦_𝑡𝑦𝑝𝑒𝑠.  
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Figure S10. Policy Implementation at National and Provincial Levels Across Different Countries 

 

We use the text description of the policy to identify if an entry was an update, recommendation or actual 

implementation. If the entry was an announcement or an update for a policy with start date and an end 

date, we give a weightage of 0 to that entry in the dataset because if there is policy update, it could 

recount that policy. Note that the policies could have been implemented differently across different 

countries, even if they were categorized in the same policy type. For example, a country may impose 

Social distancing rules from 4 pm – 8 pm while another country may impose it from 6 am – 6 pm. It may 

differ across different states in country. However, for the purpose of this research, we do not consider the 

variations in implementations of policies.  

 

As we have survey numbers for wearing face masks at a national level, we a consider policy type that 

were implemented across majority of the countries. Therefore, we do not consider Anti-disinformation 

measures, Curfew and Lockdowns. Curfew and Lockdowns are similar to Quarantine and Restrictions of 

Mass Gatherings (which lead to closure of places of mass gatherings) so we can ignore them for the 

purpose of this research. Moreover, Curfew and Lockdowns affect the community mobility, which can be 

accounted for by trend in social mobility from Google Community Mobility Reports (discussed in the 

previous Section).  

 

We also do not consider Hygiene Announcements and New Task Force policy as these were 

administrative announcements and did not have much effect on the growth rate of the infection. Some 
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policies did not have a start date and end date. We calculate the cumulative number of times 

announcements were made for such categories.  Health Testing, Health Monitoring and Health Resources 

are administrative announcements, so we combine them in to one Health Resources policy. As we use 

linear models, a linear combination (addition of three policies) does not affect our analysis. It further 

reduces the number of parameters to be estimated. Similarly, we combined Restrictions and Regulations 

of Businesses and Restriction and Regulation of Government Services. Health resources can also be used 

as proxy for increased awareness among governments and citizens. So, we do not consider “Public 

Awareness Measures” announcements to avoid multicollinearity in the set of predictor variables.  

 

Table S4 shows the correlation between different government policies implemented across countries. The 

correlation value between pairs of any two NPIs is not high (>0.7 as observed with community mobility 

across different locations in Google Community Mobility Reports), so we include all the following 8 

government policies in our model in Equation S9. We also include the Social Mobility in Parks and 

Transit Stations to check its correlation with NPIs. Changes (reduction during the early stages of 

pandemic) in social mobility were induced by the introduction of NPIs. However, social mobility is a 

combination of institutional measures e.g. NPIs and individual measures e.g. social mobility. Correlation 

between social mobility and any NPIs as shown in Table S4 is not high (>0.7) so we do not reject any 

further NPIs.  

 
Table S4. Correlation Between NPIs 
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Health Resources 1.00 0.32 0.04 0.56 0.34 0.26 0.35 0.49 -0.26 -0.26 

Restriction and Regulation of Businesses 
0.32 1.00 0.55 0.46 0.35 0.58 0.44 0.43 -0.01 -0.44 

Closure and Regulation of Schools 0.04 0.55 1.00 0.16 0.25 0.52 0.15 0.40 0.02 -0.40 

External Border Restrictions 0.56 0.46 0.16 1.00 0.28 0.38 0.47 0.26 -0.19 -0.54 

Quarantine 0.34 0.35 0.25 0.28 1.00 0.34 0.32 0.26 0.14 0.02 

Restrictions of Mass Gatherings 0.26 0.58 0.52 0.38 0.34 1.00 0.35 0.37 -0.01 -0.38 

Social Distancing 0.35 0.44 0.15 0.47 0.32 0.35 1.00 0.24 -0.14 -0.41 

Internal Border Restrictions 0.49 0.43 0.40 0.26 0.26 0.37 0.24 1.00 -0.21 -0.26 

Mobility Parks -0.26 -0.01 0.02 -0.19 0.14 -0.01 -0.14 -0.21 1.00 0.51 

Mobility Transit Stations -0.26 -0.44 -0.40 -0.54 0.02 -0.38 -0.41 -0.26 0.51 1.00 

 

Policy implementation across countries for policies considered in this work (as described above) is shown 

in Figure S11 and implementation of policies across different countries is shown in Figure S12. Note that 

we normalize 𝑠𝑗,𝑡,𝑝 such that  𝑠𝑗,𝑡,𝑝 ∈ [0,1] ∀𝑗, ∀𝑡, ∀𝑝. 
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Figure S11. Policy Implementation Across Different Countries. This graph shows how some countries e.g. Taiwan and Malaysia employed only 

few of the policies. It also shows that countries e.g. USA and Mexico employed region specific policies (at provincial level). 

 

 
Figure S12. Country wise Implementation of Different Policies. Figure shows how majority of the government policies were introduced at similar 

times across different countries. This makes it difficult to estimate the causal impact of each NPI on the spread of COVID-19. 

 

S2.6 Lag in Observation of the Effects of Control Variables 

 

Studies have reported a delay in observation of effects of policies on the events on a given day. This delay 

could be due to several reasons. One of the most prominent reasons is the incubation period (time 

between getting infected and onset of symptoms/knowing that individual is confirmed for COVID-19). 

During the incubation period, an individual may be asymptomatic. Incubation period is estimated to be 4 

days to 14 days [2]. Another reason could be the testing time – time it takes to get the confirmation of 
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results. Due to limited healthcare professionals, there could be a long queue to get tested to get the results 

from testing centers.  

 

To model this delay, we use as lag variable, 𝑠ℎ𝑖𝑓𝑡. We use cross validation method to find the lag with 

the best fit for the data. We test 𝑠ℎ𝑖𝑓𝑡 ∈ [0,14] and observe that the model performs best at a shift of 9 

days. We discuss this further in Section §Robustness check.  

 

S2.7 Testing 

 

Testing is critical in identifying the infectious individuals. Once identified, these individuals can be 

quarantined or isolated from public so that they do not spread to susceptible individuals. While people can 

get tested when they start showing symptoms, evidence reports that even asymptomatic individuals can 

spread the virus (50% of cases can be attributed to asymptomatic cases [13]) Since they do not show any 

symptoms, people around them (e.g. asymptomatic young adult living with family) are less cautious and 

may get infected through them. It is critical to identify asymptomatic individuals as they can spread the 

virus unknowingly. This can be done by increased testing and contact tracing the individual who have 

come in contact with those who tested positive for the COVID-19. Testing can be crucial in identifying 

COVID-19 positive individuals so that they can be quarantined (hospital or home isolation) or treated 

early when symptoms starts showing. In our analysis, we normalize the number for social mobility such 

that 0 ≤ 𝑡𝑒𝑠𝑡𝑖𝑛𝑔𝑗,𝑡 ≤ 1 ∀𝑗, ∀𝑡. 

 

As testing increases, the probability that more confirmed positive cases will be identified. This will lead 

to increase in empirical growth rate over time as more confirmed cases will be reported. This shows a 

change in testing pattern over time which could lead to bias (or underestimating the effect of NPIs and 

masks). To counter this time sensitive bias, we use testing data to account for increased testing over time. 

Figure S13 shows the data on total tests (per thousand people) in a country from ourworldindata.org [14].  

 

 
Figure S13. Tests per Thousand in different countries over time. The numbers indicate the total number of tests conducted per thousand people in 

a country but the data set does not provide information on how many individuals were tested for COVID-19.  
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S2.8 Google Trends 

 

As the number of cases start increasing, awareness increased in public (e.g. washing hands more often). 

We use Google Trends [15] to account for the increase in active awareness over time (Figure S14). 
Google Trends numbers indicate the search interest of a topic over time as a proportion of all other 

searches at the same time. In our analysis, we normalize the number for Google Trends such that 0 ≤
𝑡𝑟𝑒𝑛𝑑𝑗,𝑡 ≤ 1 ∀𝑗, ∀𝑡. 

 

 
Figure S14. Google Trends for the Search term coronavirus  

 

S2.9 Week Fixed Effects 

 

Handling of COVID-19 changes over time. It includes increase in public awareness or better 

understanding of the virus as more studies and research comes to public attention. Not only do citizens 

understand how to be more careful (or more informed), healthcare providers also learn more about the 

disease for more efficient treatment of COVID-19 patients (e.g. creating new wards for COVID-19 

patients, treating them by wearing Personal Protection Kits, PPE). It also involves improved infrastructure 

e.g. testing, converting existing medical facilities to dedicated COVID—19 centers. To account for all the 

time sensitive fixed effects (other than the controls we discuss before), we use fixed effects for weeks 

(from the day that country reaches 𝑡ℎ in our analysis).  

 

Figure S14 shows how the growth rate changes across different weeks (Figure S15 provides same 

information across different countries).  Even after removing the initial noisy data, we observe highest 

variance in the growth rates during week 1 in most countries (Figure S14 and Figure S15). We use one 

hot vector to denote week (𝑤𝑒𝑒𝑘𝑗,𝑡,𝑤 = 1) if day 𝑡 lies in week 𝑡 for country 𝑗. Note that due to different 

starting times for each country (Figure S6), a day may come under different week for different country.  

For example, days in week 1 for Vietnam are earlier in the calendar as compared to the days in week 1 in 
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India. Note that the growth rate is higher during the initial weeks and slows down with time. To capture 

this effect, we use fixed effects for weeks. Results in Section §Result show that the magnitude of 

coefficient for week 0 is higher than the magnitude of the coefficient for week 1 and so on.  
 

 
Figure S14. Box plot for growth rate in different weeks across different countries 

 

 
Figure S15. Box plot for growth rate in different weeks across different countries 

 

S2.10 Country Fixed Effects 
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We observe heterogeneity across countries with many aspects in handling COVID-19. Multiple factors 

affect the spread and handling of a disease in a country. Heterogeneity may be observed at different 

levels. For example, heterogeneity at government level includes difference in reporting cases, testing 

infrastructure, strictness is reducing social mobility and implementation of NPIs. Population wise 

heterogeneity includes population density in a country or percentage of population living in high density 

urban regions or poor neighborhoods with shared sanitation facilities. It may also include cities with 

international airports or international travelers (particularly from countries hard hit with COVID-19 in 

early 2020 e.g. China and Iran). It also includes heterogeneity at the level of education (awareness about 

COVID-19, responsibility in understanding the severity of precautions), poverty (health insurance, ability 

to purchase sanitizers or high quality masks), basic health care facilities (drinking water, sanitation, 

shared places) or family structure (number of young adults in a family or size of the family residing in a 

residential complex). To control for all this heterogeneity among countries which may lead to country 

level effects in the growth rate of COVD-19, we use country fixed effects.  

 

Note that since we use a constant in our model, we consider fixed effects for 23 countries and we consider 

last country (Vietnam) as our base country (with 0 fixed country effect). This ensures that parameter 

estimates are stable. 

 

S3. Results 
 

We use growth rate model in our analysis to study the effect of Masks, Social Mobility and Non-

Pharmaceutical Interventions (NPIs). Since we do not have real numbers on how many people wear 

masks (or wear masks that could be effective), we use different transformations of the mask numbers 

from the surveys. We use growth rate model with masks transformed as ln (1 + 𝑚𝑎𝑠𝑘𝑗𝑡) as our focal 

model. We use threshold 𝑡ℎ = 0.2 and 𝑠ℎ𝑖𝑓𝑡 = 9 days. Details on selection of 𝑡ℎ and 𝑠ℎ𝑖𝑓𝑡 is provided 

in Section §Robustness Check. Model statistics are given in Table S5. Parameter estimates for model with 

different transformations is shown in Table S6. 

 
Table S5. Model statistics 

  

R-squared: 0.738 

Adj. R-squared: 0.729 

F-statistic: 88.03 

Prob (F-statistic): 0 

Log-Likelihood: 2400.8 

AIC: -4712 

BIC: -4475 

No. Observations: 1422 

Df Residuals: 1377 

Df Model: 44 

 
Table S6. Parameter Estimates for Growth Rate Model 

 

var coefficient std error t-value p-value lower 

limit 

upper 

limit 

const 0.1999 0.017 11.745 0 0.167 0.233 

log Mask -0.1047 0.024 -4.385 0 -0.152 -0.058 

Mobility Parks -0.0296 0.006 -4.677 0 -0.042 -0.017 

Mobility Transit Stations 0.1109 0.013 8.398 0 0.085 0.137 

week0 0.0981 0.009 11.025 0 0.081 0.116 
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week1 0.0589 0.009 6.872 0 0.042 0.076 

week2 0.0411 0.008 5.146 0 0.025 0.057 

week3 0.0324 0.007 4.335 0 0.018 0.047 

week4 0.018 0.007 2.575 0.01 0.004 0.032 

week5 0.0039 0.007 0.592 0.554 -0.009 0.017 

week6 -0.0013 0.006 -0.209 0.834 -0.014 0.011 

week7 0.0021 0.006 0.343 0.732 -0.01 0.014 

Testing -0.0121 0.006 -1.938 0.053 -0.024 0 

Trend -0.0455 0.008 -5.933 0 -0.061 -0.03 

Health Resources -0.034 0.012 -2.881 0.004 -0.057 -0.011 

Restriction and Regulation of 

Businesses 

-0.0049 0.005 -1.03 0.303 -0.014 0.004 

Closure and Regulation of Schools -0.0153 0.006 -2.436 0.015 -0.028 -0.003 

External Border Restrictions -0.0315 0.008 -3.807 0 -0.048 -0.015 

Quarantine -0.0321 0.01 -3.194 0.001 -0.052 -0.012 

Restrictions of Mass Gatherings -0.0066 0.007 -1.007 0.314 -0.019 0.006 

Social Distancing 0.0038 0.006 0.618 0.536 -0.008 0.016 

Internal Border Restrictions -0.01 0.006 -1.639 0.101 -0.022 0.002 

Australia -0.0338 0.013 -2.531 0.011 -0.06 -0.008 

Canada 0.0205 0.012 1.645 0.1 -0.004 0.045 

Denmark 0.0167 0.014 1.23 0.219 -0.01 0.043 

Finland -0.02 0.016 -1.27 0.204 -0.051 0.011 

France -0.032 0.014 -2.209 0.027 -0.06 -0.004 

Germany -0.0101 0.014 -0.739 0.46 -0.037 0.017 

India -0.0038 0.013 -0.295 0.768 -0.029 0.022 

Indonesia 0.0353 0.013 2.71 0.007 0.01 0.061 

Italy 0.0481 0.011 4.308 0 0.026 0.07 

Japan -0.0034 0.01 -0.348 0.728 -0.022 0.016 

Malaysia -0.0397 0.013 -2.944 0.003 -0.066 -0.013 

Mexico 0.0002 0.017 0.014 0.989 -0.032 0.033 

Norway -0.0373 0.016 -2.284 0.023 -0.069 -0.005 

Philippines -0.0315 0.017 -1.88 0.06 -0.064 0.001 

UAE 0.1119 0.025 4.418 0 0.062 0.162 

Saudi Arabia 0.015 0.016 0.949 0.343 -0.016 0.046 

Singapore 0.0461 0.015 3.124 0.002 0.017 0.075 

Spain 0.0073 0.014 0.543 0.588 -0.019 0.034 

Sweden -0.0248 0.014 -1.776 0.076 -0.052 0.003 

Taiwan -0.0294 0.013 -2.322 0.02 -0.054 -0.005 

Thailand 0.0209 0.012 1.81 0.071 -0.002 0.044 

United Kingdom 0.0215 0.014 1.547 0.122 -0.006 0.049 

USA 0.0252 0.013 1.872 0.061 -0.001 0.052 

 

Figure S16 shows the complete results for the parameter estimation under different transformations for 

masks. Results for parameter estimation in Table S6 show consistency in the estimates for social mobility 
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and NPIs. They also show consistency on the parameter estimates for fixed effects (week and countries). 

Fixed effect of week is able to capture the trend in awareness or infrastructure change over time. In the 

beginning of the pandemic in a country, the growth rates were higher. This is corroborated with positive 

and statistically significant values for the fixed effects of weeks (decreases as week increase). The 

coefficients for masks seem different across the different transformations but due to its transformation, it 

has to be interpreted differently (as we discuss next in the interpretation of results). However, we cannot 

claim causality from these results as the NPIs were not randomly introduced in different countries. 

Nonetheless, we can estimate the combined effect of different mobilities and NPIs.  

 

 
Figure S16. Parameter estimates for models with different transformations for masks. We use 𝑡ℎ = 0.2 and 𝑠ℎ𝑖𝑓𝑡= 9 days. 

 

S3.1 Krinsky-Robb method 

 

In the rest of our analysis, we use Krinsky-Robb method to estimate confidence intervals for combined 

effect of masks, social mobility and NPIs. We also use this method to obtain confidence bounds across 

the predictions of growth rate and active cases in a country. Krinsky-Robb method is a Monte Carlo 

simulation method used to draw samples from multivariate normal distribution. We use ordinary least 
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square method to estimate the coefficients 𝜃 in Equation S8. Ordinary least square method for multiple 

linear regression assumes multivariate normal distribution of 𝜃. Krinsky-Robb method takes advantage of 

this assumption to sample random draws for 𝜃 using Cholesky decomposition and standard normal 

variates. Steps in Krinsky-Robb method are: 

 

1. Find Cholesky decomposition matrix 𝐶 for the covariance matrix of ∑ .𝜃  

2. Draw |𝜃| x 𝑛 random samples from standard normal distribution (|x| is the cardinality of 𝜃). 

3. 𝜃𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 𝜃 + ∑ .𝜃 x |𝜃| x 𝑛  

4. Calculate confidence interval based on 𝜃𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

We use this method to get confidence interval bounds for the sum of the coefficients of mobility and NPIs 

to get the combined effect. We also use this method to predict confidence intervals of growth rate and 

daily active cases under different scenarios as we discuss next. First, we discuss the model performance 

and then discuss the interpretation of the coefficients in Table S6.  

 

S3.2 Model Performance 

 

We can use the coefficients from our model to predict the growth rate for different countries. Figure S17 

shows the actual growth rate (green dots) with predicted growth rate (blue line) with its confidence 

interval (blue shade). We use Krinsky-Robb method to estimate the confidence interval bounds around 

the prediction. Results show that the model is accurately able to predict the growth rate of daily infections 

across different countries. Green and Brown vertical lines indicate the 60 days period for which data was 

collected for that country. 
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Figure S17. Growth Rate Predictions for different countries using current data. The green dots show the actual growth rates across countries. The 
dark blue line shows the mean of growth rate prediction (for 10000 samples in Krinksky-Robb method). The blue shaded area shows the 

confidence bounds around the mean prediction. 

 

Since growth rate is a forward looking model, we can also use growth rates to estimate active infectious 

population by 𝐼𝑗,𝑡 = 𝐼𝑗,𝑡−1x 𝑔𝑗,𝑡. Results for daily active cases are shown in Figure S18. Note that we 

estimate active cases using an exponential model. Thus, as the number of days in the prediction model 

increases, confidence interval bounds around predictions increase. However, the mean prediction for 

active cases closely approximates the actual active cases for different countries.  

 

 
Figure S18. Simulating Daily Active Cases using Forward Looking Growth Rate Model. The green dots show the actual daily active cases across 

countries. The dark blue line shows the mean of daily active cases prediction (for 10000 samples in Krinksky-Robb method). The blue shaded 

area shows the confidence bounds around the mean prediction. As the days increase, the confidence bounds increase due to the multiplicative 
method in forward looking growth rate models. 

 

 

S3.3 Effect of Masks, Social Mobility and NPIs 

 

We model growth rate as the first difference of log of active daily infectious confirmed cases as shown in 

Equation S9. Thus, the exponential of the coefficients in Table S12 (other than mask as we discuss next) 

estimates % drop in active cases on day 𝑡 (as compared to active cases on day 𝑡 − 1). Using the 

coefficients in Table S13, we can estimate the combined effect of masks, social mobility and NPIs by 

using Krinsky-Robb method. 

  

S3.3.1 Mask 
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Negative and statistically significant coefficient for masks show that increased mask wearing behavior 

may lead to decrease in the growth rate of COVID-19. As we use different transformations, the 

coefficient for masks should be interpreted differently. When masks are transformed as ln (1 + 𝑚𝑎𝑠𝑘), a 

coefficient of 𝜃𝑚 shows that if 100% of  the population wears masks, it would lead to a daily drop of 

1 − 𝑒𝜃𝑚(ln(1+1)−ln(1+0)) % in the growth rate as  compared with the scenario when no one wears face 

mask. For raw mask numbers, the effect of masks can be interpreted directly as 1 − e𝜃𝑚  % drop in daily 

total infectious cases when everyone wears masks as compared to no one wearing masks. When masks 

are transformed as  √(1 + 𝑚𝑎𝑠𝑘), coefficients should be interpreted as -- a coefficient of  𝜃𝑚 shows that 

if 100% of  the population wears masks, it would lead to a daily drop of 1 − 𝑒𝜃𝑚(√(1+1)−√(1+0)) % in the 

growth rate as  compared with the scenario when no one wears face mask.  Similarly, we can estimate the 

bounds for the effect of coefficients of masks.  The estimate for decrease in daily growth rate when one 

percent additional population wears face masks in public spaces (under different transformations) is given 

in Table S7. 

 
Table S7. Daily Drop in Growth Rate When Additional 100% People Wear Face Masks 

 

Masks Lower Limit of Daily Drop Daily Drop Upper Limit of Daily Drop 

ln (1 + 𝑚𝑎𝑠𝑘) 3.8% 6.9% 10.1% 

𝑚𝑎𝑠𝑘 5.7% 9.1% 12.5% 

√ (1 + 𝑚𝑎𝑠𝑘) 4.9% 8.2% 11.4% 

 

The effects of not wearing masks in each country is shown in Figure S19. Note that the results are not 

significantly different for Denmark, Finland, Norway and Sweden as these countries already had very low 

numbers for mass wearing in public spaces. Similarly, the effect is much stronger for countries e.g. Japan, 

Thailand and Vietnam, which have higher percentages of people wearing face masks. 
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 Figure S19. Growth Rate with no Mask Wearing. The green dots show the actual growth rates across countries. The dark blue line shows the 

mean of growth rate prediction (for 10000 samples in Krinksky-Robb method). The blue shaded area shows the confidence bounds around the 

mean prediction. We predict the growth rate when the masks are transformed as ln (1 + 𝑚𝑎𝑠𝑘). 

 

Similar to Figure S18, we can predict daily active cases with zero percent mask wearing as shown in 

Figure S20. The results show that masks lead to significant reduction in total cases as without these 

measures, the number of cases could exponentially increase over time (more discussion later on §Country 

wise effect), 
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Figure S20. Simulation with no Mask Wearing. The green dots show the actual growth rates across countries. The dark blue line shows the mean 

of active cases prediction (for 10000 samples in Krinksky-Robb method). The blue shaded area shows the confidence bounds around the mean 
prediction. 

 

We build five simulation models to further understand the impact of masks. In the first simulation model, 

we consider a hypothetical country with a constant value for all the covariates in the Equation S8. In the 

second simulation model, we check the change in active cases at the end of 60 days when mask wearing 

in a country is 𝑚% where 𝑚 ∈ [0,10,20, . . ,100].  In the third model we check the change in active cases 

at the end of 60 days if the current levels of mask wearing is multiplied by a factor of 𝑥 ∈
[0,0.2,0.4, … ,2]. In the fourth model, we present results for active cases at the end of 60 days when mask 

wearing percentage increases by 𝑎% as compared to the current levels in that country where 𝑎 ∈
[1,2, . .10]. In the fifth model, we exchange the mask wearing numbers between countries with minimum 

and maximum average mask wearing through the period of our analysis. 

 

Simulation Model 1 helps in isolating the effect of masks as in this analysis, we do not consider any other 

covariates (as if no individual or institutional measures were taken apart from wearing masks in public 

areas). We construct data for a hypothetical country with these numbers to quantify the effect of masks in 

our analysis. In Simulation Model 2-4, we study country-wise association of masks with growth rate. In 

these models, we do not change numbers of any other covariates other than masks. These results show the 

potential change in active cases in that country for different percentage of people wearing masks in 

public. Simulation model 5 is used to build an approximate counter factual model for masks by 

exchanging mask wearing in countries with minimum and maximum average mask wearing during the 

period of our analysis. We discuss the results of these simulation models next. 
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Simulation Model 1: Average country 

 

We simulate a hypothetical country with no wearing (𝑚𝑎𝑠𝑘𝑗𝑡 = 0), no active awareness ( 𝑡𝑟𝑒𝑛𝑑𝑗𝑡 = 0), 

no testing( 𝑡𝑒𝑠𝑡𝑖𝑛𝑔𝑗𝑡 = 0) and no government implemented NPIs (𝑠𝑝𝑗𝑡 = 0). We predict the active cases 

at the end of 60 days at different levels of mask wearing. We consider the average country with 0 country 

fixed effects for prediction. Daily active cases for this average country at different levels of mask wearing 

is shown in Figure S21. We assume that the average country has 100 cases on day 0 of simulation. 

Results show that increasing the mask number can help in flattening the curve (even when social mobility 

and NPIs remain unchanged). As the percentage of people wearing face masks increases, the daily active 

goes down as compared to no mask wearing. Results also show that social mobility along with NPI can 

also play significant role in flattening the curve (the daily active curve flatten even with no mask wearing, 

albeit slower). Cases starts rising again after initial flattening for most cases as social mobility increases 

and NPIs are relaxed (Figure S8). The results imply that if masks are mandated and its use widespread, 

complete lockdowns may be eased to help alleviate the associated economic hardships. 

  

 
Figure S21. Daily Active Cases for the Average Country. As more people wear masks, the faster the curve can be flattened. Note that the graph 

shows the mean prediction under different levels of mask wearing. Also, it shows the daily active cases. Flattening of a curve has been 

synonymous with daily new cases, but if we use 𝐼𝑡 − 𝐼𝑡−1, we can approximate daily new cases. 

 

Simulation Model 2: Changing mask levels 

 

In this simulation, we predict the number of active cases in each country by changing the levels of mask 

wearing. Figure S22 shows the ratio of active cases at the end of 60 days under different levels of mask 

wearing as compared to active cases at the current levels of masks. As the mask levels increase, the ratio 

of active cases to the true active cases at the end of 60 days decreases (Figure S22). 
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Figure S22. Box Plot on Ratio of Predicted Active Cases to Actual Cases at the End of 60 Days Under Different Levels of Mask Wearing. 

 

Simulation Model 3: Multiplying a constant to current mask levels 

 

In this simulation, we multiply the current mask wearing levels with a constant multiplication factor (0.2, 

0.4, ..,, 2) to predict active cases at the end of 60 days as compared to actual scenario across 24 countries 

(Figure S23). Similar to Figure S22, we observe as we increase mask levels, ratio decreases significantly. 

However, the effect is different across different countries. 

 

Similar to results in Figure S22, when the mask levels are much lower than the current levels (e.g. 

countries like Thailand, Vietnam, Singapore), the ratio of active cases at the end of 60 days (as compared 

to current levels of mask wearing) is much higher as compared to countries with lower current mask rates 

(e.g. Sweden, Norway). 
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Figure S23. Box Plot on Ratio of Predicted Active Cases to Actual Cases at the End of 60 Days Under Different Levels of Mask Wearing 

obtained by multiplying the current levels of mask wearing with a constant. 

 

Simulation Model 4: Adding a constant to current mask levels 

 

In this simulation, we predict the ratio of active cases at the end of 60 days when mask wearing in a 

country is increased by different percentage points (0%, 1%, 2%, …, 9 %). Figure S24 plots the ratio of 

active cases at the end of 60 days with simulation for increased mask wearing to the actual active cases. 

This could help the government in forming policies that if 𝑎 % of more people follow the guidelines of 

wearing face masks, which NPIs could be relaxed while still controlling the spread of the virus. Enforcing 

mask wearing policy could be particularly useful in countries with low mask wearing. 
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Figure S24. Box Plot on Ratio of Predicted Active Cases to Actual Cases at the End of 60 Days Under Different Levels of Mask Wearing 

obtained by increasing the current levels of mask wearing by different percentage points. 

 

Simulation Model 5: Exchanging the current mask levels 

 

Countries have observable heterogeneity in their culture of mask wearing (Figure S4). Mask wearing has 

been more common in Asian countries as compared to Scandinavian countries. In this simulation, we 

exchange the mask wearing numbers between 8 countries (4 Asian with highest average mask wearing 

among 24 countries and 4 Scandinavian countries with lowest average mask wearing among 24 

countries). The ratio of active cases under new mask wearing as compared to actual active cases at the 

end of 60 days is shown in Table S7. Results show that Scandinavian countries could have reduced their 

confirmed cases significantly if they had enforced people to wear face masks in public. We find that the 

Scandinavian countries could have reduced the active cases by up to 50 times in 60 days if the citizens 

were wearing masks at the levels of Asian Countries.  

 
Table S7. Ratio of Active Cases at the End of 60 Days after Exchanging Mask Wearing Numbers 

  
country exchanged with LL M UL 

max Malaysia Denmark 23.86516 25.13209 26.44875 

max Philippines Finland 12.00857 13.95786 16.19232 

max Taiwan Norway 35.53529 39.52427 43.90114 

max Thailand Sweden 33.90308 36.76336 39.82361 

min Denmark Malaysia 0.009502 0.041856 0.180894 

min Finland Philippines 0.00727 0.035283 0.167807 

min Norway Taiwan 0.00432 0.025148 0.143133 

min Sweden Thailand 0.004408 0.025332 0.142346 
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We present the combined effect of social mobility and NPIs. We provide a combined effect for social 

mobility and NPIs as it is difficult to estimate the causal analysis for individual variables. We use 

Krinsky-Robb method to estimate the combined effect of social mobility and NPIs. After drawing 

samples of coefficients of social mobility and NPIs using Krinsky-Robb method, we add the random 

samples draw and present the mean and confidence interval bounds of these samples as the combined 

effect and confidence interval bounds of that combined effect. 

 

S3.3.2 Social Mobility 

 

Parameter coefficients in Table S6 show that growth rate increases as mobility increases. This is because 

if people travel more or move to places with potential of public gatherings, infected individuals can 

spread the virus to the susceptible population. Governments therefore imposed strict restrictions to reduce 

mobility. We report the effect of mobility as negative of the coefficients in Table S13. Thus, we report the 

effect of mobility if the mobility numbers were 0 (no mobility change). Results in Figure S25 indicates 

that 0 change in mobility trends (no change in individual mobility trend indicates if people move around 

as they were before COVID-19) is associated with a daily increase in growth rate by 8.1% (5.6% - 10.6%) 

as compared to no mobility. Note that decrease in mobility can also be attributed to NPIs, no causality can 

be claimed on the effect of increase in mobility on growth rate. 

 

The effect of full mobility across different countries is shown in Figure S25. It shows that even with mask 

numbers remaining unchanged and NPIs being implemented as they were implemented in that country, 

increasing mobility can lead to a significant increase in growth rate. Similar to Figure S20, we can predict 

daily active cases with full mobility as shown in Figure S26. 

 

 
Figure S25. Growth Rate with Full Mobility. The green dots show the actual growth rates across countries. The dark blue line shows the mean of 

growth rate prediction (for 10000 samples in Krinksky-Robb method). The blue shaded area shows the confidence bounds around the mean 
prediction. 
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Figure S26. Simulation with no change in Mobility (as compared to pre-COVID-19 mobility). The green dots show the actual daily active cases 

across countries. The dark blue line shows the mean of active daily cases prediction (for 10000 samples in Krinksky-Robb method). The blue 

shaded area shows the confidence bounds around the mean prediction. 

 

Similar to exchanging the mask wearing numbers among the countries with lowest and highest mask 

wearing percentages, we simulate for the active cases at the end of 60 days by exchanging social mobility 

among countries with highest and lowest social mobility. The results are shown in Table S8. 

 
Table S8. Ratio of Active Cases at the End of 60 Days after Exchanging Social Mobility Numbers 

 

 

Social Mobility 

 

Country 

 

Exchanged with 

Lower Limit for 95% 

confidence Interval 

 

Ratio 

Upper Limit for 95% 

confidence Interval 

High Philippines Taiwan 1.81473 6.940316 26.09045 

High Denmark United Kingdom 2.495734 2.620681 2.750162 

High Sweden India 1.163527 1.270406 1.385541 

High Norway Spain 0.998357 1.100658 1.211927 

Low Spain Norway 0.363724 0.947547 2.438379 

Low India Sweden 0.026063 0.123776 0.576219 

Low United Kingdom Denmark 0.314838 0.384042 0.467267 

Low Taiwan Philippines 0.016745 0.098078 0.561585 

 

S3.3.3 Non-Pharmaceutical Interventions (NPIs) 

 

Negative and statistically significant estimate for the combined effect of NPIs show that NPIs helped in 

controlling the spread of virus. Results in Table S6 indicates that if mask wearing and mobility remains 
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unchanged, implementing NPIs is associated to a daily drop in infectious cases by 13% (9.2% - 16.2%). 

Predicted growth rate and daily active cases with no NPIs is shown in Figure S27 and S28 respectively. 

 

 
Figure S27. Growth Rate with no NPIs. The green dots show the actual growth rates across countries. The dark blue line shows the mean of 
growth rate prediction (for 10000 samples in Krinksky-Robb method). The blue shaded area shows the confidence bounds around the mean 

prediction. 
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Figure S28. Simulation with no NPIs implemented. The green dots show the actual growth rates across countries. The dark blue line shows the 

mean of active cases prediction (for 10000 samples in Krinksky-Robb method). The blue shaded area shows the confidence bounds around the 

mean prediction. 

 

Similar to exchanging the mask wearing numbers among the countries with lowest and highest mask 

wearing percentages, we simulate for the active cases at the end of 60 days by exchanging NPI numbers 

among countries with highest and lowest number of NPIs introduced across the country. The results are 

shown in Table S8. 

 
Table S9. Ratio of Active Cases at the End of 60 Days after Exchanging Social Mobility Numbers 

 
 

NPI 

 

Country 

 

Exchanged with 

Lower Limit for 95% 

confidence Interval 

 

Ratio 

Upper Limit for 95% 

confidence Interval 

High 
Italy Finland 2.551666 8.34897 26.90575 

High 
Australia Norway 10.81348 17.51927 28.20859 

High 
Thailand Malaysia 40.38261 209.2452 1061.602 

High 
Singapore France 10.7138 59.20919 320.1261 

Low 
Finland Italy 0.12681 0.13582 0.145342 

Low 
Norway Australia 0.084334 0.092976 0.102375 

Low 
Malaysia Thailand 0.001354 0.006118 0.027119 

Low 
France Singapore 0.00753 0.015919 0.033334 

 

S3.3.4 Combined Effect of Mask, Social Mobility and NPIs 

 

Similar to presenting the combined effect of mobility and NPIs, we use the Krinsky-Robb method to 

present the effects for the combined effect of masks, social mobility and NPIs in daily drop in growth rate 
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in Figure S29. Figure S29 also show the robustness of the model across different values of 𝑠ℎ𝑖𝑓𝑡. It also 

shows the Mean Absolute Percentage Error for 10 – fold cross validation used to get the 𝑠ℎ𝑖𝑓𝑡 that best fit 

the data. We observe best data fit for a lag of 9 days. Grey vertical lines indicate a shift of day 7 and day 

11. The combined effect of masks, social mobility and NPIs is estimated to be a 28.1% (24.2%-32%) drop 

in daily growth rate. 

 

Results show that the effect of masks remain consistent across different transformations and different 

𝑠ℎ𝑖𝑓𝑡. We also observe consistency across different transformations of mask numbers.  Furthermore, the 

total combined effect of masks, social mobility and NPIs remain consistent as we change 𝑠ℎ𝑖𝑓𝑡.   

 

 
 

Table S29. Combined effect of Mask, mobility and NPIs in daily % drop in infectious cases 

 

The results show that masks, social mobility and NPIs lead to significant reduction in total cases as 

without these measures, the number of cases could exponentially increase over time. 
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S3.4 Testing and Google Trends 

 

Negative and statistically significant coefficient for testing and Google Trends indicate a drop in daily 

growth rate as these numbers increase. As testing increases, it may show increased daily confirmed cases 

(as more people get tested and it can discover asymptomatic cases). However, our model uses a lag of 9 

days. Thus the cases may not be affected by testing immediately. Thus, a negative coefficient with a lag 

shows that testing helps in achieving a daily drop in growth rate in active infectious cases. Similar to 

testing, as our model uses a lag of 9 days, increased google trends indicate increased awareness among 

the citizens regarding COVID-19 which may lead to more caution against COVID-19.  

 

S4. Robustness Checks  
 

S4.1 Selection of 𝑡ℎ and 𝑠ℎ𝑖𝑓𝑡 

 

To filter the initial volatile growth rate, we use a threshold in the model (one for each country). We start 

collecting data for a country from the day respective countries reach their threshold. We define threshold 

as -- the day after which the 7-day average of daily new cases were th % of the peak daily new cases 

observed in that country. Decreasing 𝑡ℎ will add noise to the model due to high volatility in early the 

growth rates. However, if the threshold is high, we miss out on important data, particularly during the 

initial phase when the growth in infections is exponential.  

 

Along with 𝑡ℎ, we also use 𝑠ℎ𝑖𝑓𝑡 in the growth rate model to capture the delay in effect of mask, Non-

Pharmaceutical Interventions (NPIs) and mobility. First we find the value of 𝑡ℎ and then use that 𝑡ℎ to 

find optimal 𝑠ℎ𝑖𝑓𝑡 for our analysis. We calculate log likelihood for growth rate model under different 

𝑡ℎ ∈ (0.01, 0.02, … , 0.3). For each 𝑡ℎ, we run the model for different 𝑠ℎ𝑖𝑓𝑡. Using multiple 𝑙𝑎𝑔 ensures 

that the model performance is consisted with different values of 𝑠ℎ𝑖𝑓𝑡. It also ensures that we do not 

select 𝑡ℎ that performs well by chance. We select 𝑡ℎ based on maximum average log likelihood for 

different 𝑠ℎ𝑖𝑓𝑡. We start with threshold value of 0.01 and starts increasing. Figure  S30 shows that the 

average log-likelihood for does not change much after 𝑡ℎ = 0.18. We use a 𝑡ℎ = 0.20 in the rest of the 

paper. We use sensitivity test to check the consistency of the model. 

  

 
Figure S30. Average Log-likelihood Values for Different 𝑡ℎ. The model performs the best (based on maximum likelihood function) when 𝑡ℎ =

0.28. However, the performance change is not significant after 𝑡ℎ = 0.18. So we use 𝑡ℎ = 0.2 in our analysis in this research. 
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In the growth rate model, we use 𝑠ℎ𝑖𝑓𝑡 to estimate the parameter coefficients as shown in Equation S9. 

After we select 𝑡ℎ, we use cross validation to find 𝑙𝑎𝑔 that best fits the data. We use 10-fold cross-

validation with Mean Percentage Error (MAPE) as a metric for out of sample data points to select 

𝑠ℎ𝑖𝑓𝑡 with the best fit. The average MAPE (for 10-fold cross validation) for different lags is shown in 

Figure S31. 𝑠ℎ𝑖𝑓𝑡 = 9 days shows the best fit with minimum value for average MAPE for 10-fold cross 

validation. 

 

 
Figure S31. Average MAPE  from 10-fold Cross Validation Different 𝑙𝑎𝑔. Minimum value for Mean Absolute Percentage Error (MAPE) is 

obtained at a 𝑙𝑎𝑔 = 9 𝑑𝑎𝑦𝑠. 

 

S4.2 Model Estimation Sensitivity to 𝑡ℎ and 𝑠ℎ𝑖𝑓𝑡 

 

We use sensitivity test to check the consistency of the parameter estimates for different values of 𝑡ℎ and 

𝑠ℎ𝑖𝑓𝑡. The performance of the model remains consistent on changing the values of 𝑡ℎ from 0.18 to 0.22 

as shown from parameter estimates in Figure S32 (we use a 𝑠ℎ𝑖𝑓𝑡 of 9 days). The performance of the 

model remains consistent on changing the values of 𝑠ℎ𝑖𝑓𝑡 from 7 days to 9 days as shown from parameter 

estimates in Figure S33 (we use 𝑡ℎ = 0.2). We transform masks as ln(1 + 𝑚𝑎𝑠𝑘𝑗𝑡). 
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Figure S32. Parameter Estimates for Growth Rate Model for Different 𝑡ℎ. Horizontal lines represent the upper and lower confidence interval 

bound for the parameter estimates. We show the results for a lag of 9 days with 𝑡ℎ ∈ [0.18,0.22]. The results indicate that the model is robust to 

different lags as the parameter estimates show consistency. Vietnam has been kept as the base country (the fixed country effect is 0).  
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Figure S33. Parameter Estimates for Growth Rate Model for Different 𝑠ℎ𝑖𝑓𝑡. Horizontal lines represent the upper and lower confidence interval 

bound for the parameter estimates. We show the results for a lag of 7 days to 11 days with 𝑡ℎ = 0.2. The results indicate that the model is robust 

to different 𝑠ℎ𝑖𝑓𝑡 as the parameter estimates show consistency. Vietnam has been kept as the base country (the fixed country effect is 0).  

 

S4.3 Handling Data Error in Active Cases 

 

In Figure S5, we observe data reporting issue in Norway, Sweden and United Kingdom. We observe that 

the recovered cases are reported very late in Norway, not reported in Sweden and recorded very in United 

Kingdom. We use data from Johns Hopkins Resource Center. In our analysis, we use total confirmed 

cases to find active cases for these three countries. However, this may lead to bias in the results. To check 

the bias, we run the model without these three countries. The parameter estimates after excluding these 

countries is shown in Figure S34. In Figure S18, we show the parameter coefficients when 𝑠ℎ𝑖𝑓𝑡 = 9 

days and 𝑡ℎ = 0.2.  

 

The results show that the model parameter estimates are robust to exclusion of Norway, Sweden and 

United Kingdom from the model. However, the model slightly overestimates the coefficient of masks 

after excluding Norway, Sweden and United Kingdom (as compared to the growth model with data from 

all the 24 countries). All the three countries are in Europe where wearing face masks is not as common as 

Asian countries. Moreover, Norway and Sweden (along with Denmark and Finland) have the lowest 

percentage of people who wear face masks in public in our data set.  
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Figure S34. Parameter Estimates for Growth Rate Model after excluding Norway, Sweden and United Kingdom from the analysis. Horizontal 
lines represent the upper and lower confidence interval bound for the parameter estimates. We show the results for different transformations of 

𝑚𝑎𝑠𝑘𝑗𝑡. The results indicate that the model is robust to different transformations as the parameter estimates show consistency. Vietnam has been 

kept as the base country (the fixed country effect is 0) 

 

S4.4 Robustness Check for Mobility  

 

In our analysis, we used Google’s community mobility report as a measure of social mobility. We used 

Google’s Community reports numbers as a measure of social mobility as android operating devices are 

more common than iOS, particularly in Asian countries [14]. Also, Apple’s Community Mobility Reports 

record data only when an individual opens Apple Maps. To check the robustness of the combined effect 

of masks, social mobility and NPIs, we also consider the apple’s community mobility numbers as a 

measure of social mobility. Apple released data for change in trend for driving and walking for all the 24 

countries considered in this work. The combined effect after substituting with apple’s mobility report is 

shown in Figure S35. Consistency of the results show that the estimates for the model are robust. 
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Figure S35. Combined effect of masks, social mobility and NPIs with mobility numbers from Google and Apple 
 

S4.5 Alternative Specifications 

 

We build two robustness model to check the consistency and reliability of the parameter estimates of the 

growth rate model. In the first robustness check, we use exponential smoothing as shown in Equation S9-

S10. In the second model, we use a control function approach to identify the impact of masks on the 

spread of COVID-19. We discuss it in details in this Section. 

 

S4.5.1 Model 1: Exponentially Smoothed Variates for Growth Rate 

 

In the first specification, we use exponential smoothing to estimate the parameter estimates for masks, 

NPIs and social mobility. In our base model in Equation S8, growth rate is defined as a function of masks, 

NPIs, social mobility, trend and testing at a lag of 𝑙𝑎𝑔 days. On any day 𝑡, this model ignores the value of 

the variates from days 𝑡 − 𝑙𝑎𝑔 + 1 to 𝑡 (discussed in Figure S1). In this model, we do not ignore variates 

between 𝑡 − 𝑙𝑎𝑔 and 𝑡 and use exponential smoothing average to check the robustness of our model. To 

check the consistency of the parameter estimates for different transformations of masks (top left), 

mobility (top right), NPIs (bottom left) and the combined effect of masks, social mobility and NPIs 

(bottom right) is shown in Figure S36.  

 

We also show the parameter estimates from the growth model for comparison. The results show that the 

parameter estimates for both the models are close and consistent, thus showing the robustness of the 

results in Table S6. 
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Figure S36. Effect on daily % drop in growth rate by Masks, Mobility, NPIs and the Combined effect of masks, social mobility and NPIs with 

𝑠ℎ𝑖𝑓𝑡 = 9 days for exponentially smoothed model.  

 

In the next model, we use a control function approach to check the robustness of our estimates in Table 

S6. Control function approach considers an error variable based on an exogenous variable which is not 

correlated with response variable but is correlated to an instrumental variable. We use number of deaths 

per thousand people for SARS, H1N1 and MERS CoV ad our instrumental variables.  

 

S4.5.2 Model 2: Control function Approach to Growth Rate 

 

In the control function approach, we first predict the average value of 𝑚𝑎𝑠𝑘𝑗,𝑡 by using the number of 

deaths per thousand people in each country by SARS, MERS-CoV and H1N1. Results from predicting 

masks using disease per thousand people is shown in Table S10 and the parameter estimates are shown in 

Table S11.  

 

Note that we consider all the available data set (from February 21, 2020 to July 8, 2020) to estimate the 

coefficients for SARS, H1N1 and MERS.  We convert the numbers for deaths due to SARS, H1N1 and 

MERS into binary variable (1 if the number for a country is greater than the median). 

 
Table S10. Results Statistics for Predicting 𝑙𝑜𝑔(1 + 𝑚𝑎𝑠𝑘) using SARS, H1N1 and MERS 

 

R-squared: 0.056 

Adj. R-squared: 0.055 

F-statistic: 65.24 

Probability (F-statistic): 0 

Log-Likelihood: -8108 

AIC: 16200 

BIC: 16250 

No. Observations: 3312 

Degree of Freedom:  Residuals: 3308 

Degree of Freedom:  Model: 3 
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Table S11. Results from Predicting 𝑙𝑜𝑔(1 + 𝑚𝑎𝑠𝑘) using SARS, H1N1 and MERS 

 

coef std err t P>|t| [0.025 0.975] 

Sars 0.5013 0.179 2.797 0.005 0.15 0.853 

H1N1 -1.3904 0.101 -13.78 0 -1.588 -1.193 

Mers 0.1556 0.114 1.363 0.173 -0.068 0.38 

const 6.9685 0.071 98.706 0 6.83 7.107 

 

We use 𝑚𝑎𝑠𝑘𝑗𝑡 along with the residuals from prediction model, 𝑒 = 𝑚𝑎𝑠𝑘𝑗𝑡 − 𝑚𝑎𝑠𝑘𝑗
̂ , as control 

function in Equation S9. The results for the combined effect of masks, social mobility and NPIs is shown 

in Figure S37. We use a 𝑠ℎ𝑖𝑓𝑡 of 9 days. We also show the combined effect of masks, social mobility and 

NPIs without control function (focal model in this paper) to show that the combined effect of masks, 

social mobility and NPIs estimated in Figure 21 are not appreciably different.  

 

 
 

Figure S37. Combined effect of Mask, Social Mobility and NPIs with and without control functions. We use growth rate model with a 𝑠ℎ𝑖𝑓𝑡 of 9 

days. 

 

S4.5.3 Lasso Regression 

 

Governments across the world introduced NPIs to enforce social distancing through policies like 

quarantine, restriction on mass gatherings or closure of schools and businesses. NPIs led to decreased 

social mobility. For example, there were no major gathering in railway or bus stations as rails and buses 

were closed down. In our analysis, NPIs and social mobility across different location types are correlated.  

This may lead to multicollinearity that may lead to unstable coefficients. As a robustness check, we use 

penalized linear regression (Lasso regression) to shrink the coefficients of highly correlated variates.  

 

Lasso regression can also handle multicollinearity in the data as it shrinks the coefficients to 0 using L1-

norm. Lasso regression pushes the coefficients of insignificant variables to 0, thereby introducing sparsity 

in the model. Lasso regression pushes the coefficients for all the indicators of social mobility except 

mobility in parks and transit stations. As we observe the correlation between different indicators of social 
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mobility in Table S2, Lasso regression provides a validation for the selection of two (out of 6) indicators 

of mobility. Coefficients for the growth model are shown in Figure S38. Lasso regression model is given 

in Equation S14 where 𝑛 is sample size, 𝛽 is a vector of coefficients and 𝑌 is outcome variable. We use 5-

fold cross-validation to find 𝜆 that best fits the out of sample test data. 

 

β =  arg min
β∈R𝑝 

{
(Y − Xβ)2

n
 +  λ||β||

1
}                            (S14) 

 

 
Figure S38. Parameter Estimation from Ordinary Least Square and Lasso Regression Model for growth rate. The blue dot represents the 

coefficients estimated from the Linear Regression model.  The error bars represent the upper and lower confidence interval for the coefficients 

obtained from Ordinary Least Squares. The blue dot represents the coefficients estimated from the Lasso Regression model.  

 

S4.6 Selecting Period of Analysis in the Analysis 

 

To filter out initial volatile growth rates during the start of the pandemic, we use a threshold 𝑡ℎ as 

discussed before. We collect data for up to 60 days for a country, from the day it reaches 𝑡ℎ percent of 

peak daily cases in that country. However, the model estimates could be biased and fit to the given set of 

data points. To estimate the robustness of the model, we estimate the model parameters by collecting data 
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for up to 𝐷 days from the day that country reaches threshold 𝑡ℎ. The results for the combined effect of 

mask, social mobility and NPIs for different 𝐷 ∈ [35,45,55,65,75,85] is shown in Figure S39. 

 

 
 

Figure S39. Combined effect of Mask, Social Mobility and NPIs when data is collected for different number of days. We consider a shift of 9 

days for these results (Note that a shift of 9 days was the best fit for a model that used data for 60 days. The results show consistency within the 
bounds of the combined effects.  

 

S4.7 Interpolating Mask Survey Numbers Between Survey Days 

 

We use survey data released by the Institute of Global Health Innovation (IGHI) at Imperial College 

London and YouGov4 for reported mask-wearing across multiple countries. The data present global 

insights on people’s reported behavior in response to COVID-19. The dataset provides the percentage of 

population in each country who report to wear a mask in public places. Because these surveys were 

conducted at an interval of several days, we used linear interpolation to estimate the percentage of the 

population that would wear masks in public spaces for days when the data were unavailable (Figure S4). 

To check the robustness of estimates from the model, here we use a quadratic interpolation method to 

estimate the percentage of population that would wear masks in public spaces for days between surveys. 

The estimate for stated mask wearing using quadratic interpolation is shown in Figure S40.  
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Figure S40. Survey data on percentage of people who say they wear a face mask when in public spaces. We use quadratic interpolation to 

consider mask numbers for days between surveys days. The dots represent the raw numbers from surveys. 

 

The results for the association of mask, social mobility, NPIs and the combined effect of masks, social 

mobility and NPIs on growth rate for quadratic interpolation is shown in Figure S41. We use a 𝑠ℎ𝑖𝑓𝑡 of 9 

days and transformed masks as our focal model (ln (1 + 𝑚𝑎𝑠𝑘)). We also show similar for linear 

interpolation (focal model in this paper) to show that the parameter estimates are not appreciably 

different. 

 

 
Figure S41. Combined effect of Mask, Social Mobility and NPIs under different interpolation for mask survey numbers. We use growth rate 

model with a 𝑠ℎ𝑖𝑓𝑡 of 9 days and consider data for 60 days. 
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Data and Code Availability 

 

All codes have been written in python 3.7 programming language. All data and codes are available at 

open sourced Github repository at: https://github.com/ashutoshnayakIE/COVID-masks. Data is stored in 

python’s numpy format. However, the raw data can be procured from the sources mentioned in the 

references below (link for raw data set is also provided in the Github repository). 
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