
Artificial  Intelligence  Predicts  and  Explains  West  Nile  Virus  Risks  Across  Europe:
Extraordinary Outbreaks Determined by Climate and Local Factors

Supplement: 

cross-model comparability and the impact of scale-dependent variability 

Geospatial disease models are notoriously difficult to compare. All differ in terms of included
feature  classes,  aggregation  and  summary  of  features,  included  covariates,  and  spatiotemporal
coverage and resolution. Studies also differ in terms of disease outcomes being predicted – presence
versus  incidence  –  as  well  as  case  definition  and inclusion  criteria.  Beyond  that,  relationships
between disease and the various features being tested may vary based on specific geography1 or
analytical resolution and scale2. This has been noted most particularly in the case of WNV3. For
example, specific relationships may exist between climate and disease at broad spatial scales, but
not at finer scales where other features may dominate4. WNV has long been present in the Old
World;  the  dynamics  of  emergence  and  transmission  are  therefore  generally  considered  more
complex  than  in  the  Americas5.  In  addition  to  a  broader  diversity  of  potential  hosts,  vectors,
environments, and human population dynamics, the presence of several competing viral lineages
makes this indisputable6. Few have attempted to tackle this challenge. And none have approached
the degree of out-of-sample predictive power demonstrated in the present work, particularly in the
context of an extreme event year, such as the 2018 outbreak in Europe. Tran et al (2014)7 presented
a similarly scoped logistic regression model to predict the 2012 and 2013 outbreaks in Europe based
on data from the statistically similar 2002-2011 years. Reported AUC was 0.810 and 0.853 (resp.)
and the feature set covered was an order of magnitude lower than the present work. The predictors
identified as  most  important  were temperature in  July,  MNDWI in early June,  wetlands,  trans-
Saharan migratory routes, and WNV outbreak in the year prior. Marcantonio et al (2015)6 predicted
incidence  in  Europe  using  a  linear  mixed  effects  model  using  a  range  of  predictors  broadly
equivalent to the present work. Climate, land use, indices of water, vegetation, conservation status,
landscape fragmentation and human population density were included. An R2 of .32 was reported,
with climatic and environmental features found to be the most important. Work more similar to the
present study has been produced in the American context. Keyel (2019)8 reported on a similarly
high-dimensional model using a similar underlying methodology (Random Forest). An R2 of .72
was reported,  with climate and total  human population being the most important  features.  And
similar to the present work, scale-dependent variation of feature effect estimates were noted. Similar
conclusions were also drawn regarding the primacy of non-climatic features in determining baseline
risk for a given locale. However, predictive power was found to drop off substantially at lower
geospatial  scales.  The  present  study  presents  a  powerful  means  to  mitigate  such  concerns.  As
demonstrated,  the  “bottom-up”  nature  of  local  model  aggregation  allows  for  the  reporting  of
standardized effect sizes. This is an extremely common practice in the areas of biostatistics and
meta-analyses, and has indeed been cited in those contexts as preferable over direct comparison of
effect  estimates9,10.  In  such  contexts,  effect  size  can  be  directly  converted  into  a  probabilistic
measure of the degree to which an observed change is associated with the outcome11. It has also
been demonstrated to directly correspond with common measures of explanatory power, such a
Pearson’s r , r2 ,  and  the  non-parametric U (Mann-Whitney)  statistic12.  That  this  measure
also happens to control for scale-dependent variability in the geospatial context is an added plus.

Effects predicted by SHAP align well  with the published consensus. Efforts  to  quantify the
effect of various potential determinants on WNV outbreak risk have indeed been well-documented.
However, as discussed, broad consensus in the literature with respect to magnitude and direction of
effect  does not  exist.  Whatever  consensus  does exists  relies on generalized restatements of  the
preestablished mechanistic relationships: “ectotherms require heat”, “mosquito breeding requires
standing water”, “trans-Saharan migrant birds carry the disease”, “disease is likely to reoccur in
previously  infected  regions”,  etc13,14.  However,  such  generalized  relationships  have  been  rarely
concretely reflected in effect estimates from any individual model. And even fewer have presented
such results side-by-side within the context of a single, comprehensive model. The present work



offers a novel, but intuitive solution. When parameter effects are assessed only for those regions
where positive outbreak is indicated (Figure SS1), the prevailing consensus emerges. Priority and
magnitude of effect of top positive predictors align remarkably well with those reported within the
literature15.  The  only  notable  surprises  are  with  respect  to  the  effects  of  downward  surface
shortwave radiation and distribution of the vector, Anopheles plumbeus. However, the former aligns
well with findings regarding the effect of diurnal variation on vector activity. As for the latter, prior
work has confirmed the capacity for  Anopheles plumbeus  to serve as vector for WNV16 and the
ECDC suggests this possibility on their WNV fact sheet (current as of 2020)17. Further work is
required to quantify the degree of alignment between the these results and those reported in the
literature. However, present results demonstrate strong prima facia validity.

Figures and Legends

[Figure SS1]

Drivers of positive indication revealed via analysis of aggregate effects. The output of the SHAP
reannalysis is an effect matrix that is dimensionally identical to the original data set. Diagnostic
analyses (Figure S3) confirmed a high degree of correlative association between the feature effect
matrix and the original data. One convenient feature of this surrogate data model is the ability to
generate and assess arbitrary aggregations of cases and/or feature sets. We exploited this feature to
obtain aggregate effect estimations for the regions where positive outbreak status was indicated by
the model in 2018. We found that vapor pressure became a far more dominant predictor in this
context as well as the local distribution of the known mosquito vectors, Culex pipiens and  Culex
modestus, and the suspected but never confirmed vector, Anopheles plumbeus. In this context – that
of regions with positive outbreak risk indication in 2018 – the effect of autocorrelative history of
outbreak once again became an important determinant of risk.
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