
 

 

Supplementary Materials 

Sample collections 
 The Schizophrenia Exome Meta-Analysis (SCHEMA) consortium was formed in 2017 to 
aggregate and generate exome-sequencing data for the purposes of schizophrenia gene 
discovery. To expedite the scale-up of this global effort, our analysis incorporates existing 
sample collections that had been described and analyzed in earlier and current epidemiological 
and genetic studies of schizophrenia. Table S1 described contributing collections along with the 
number of samples sequenced, the number of samples retained in the final analysis, and the 
technological assays used to generate the sequencing data. For each collection, we referred to 
earlier publications that described the phenotypic ascertainment and analyzed these data for 
insights related to schizophrenia. In summary, 7,979 schizophrenia cases from four collections 
(Swedish schizophrenia study, UK10K schizophrenia study, Bulgarian trios study, Taiwanese 
trios study) had been exome sequenced and described in earlier publications1–4. The remaining 
16,269 cases had been previously described in other genetic studies of schizophrenia, primarily 
through genotyping efforts such as the Psychiatric Genomics Consortium; however, the 
generation and analysis of their sequencing data are presented here for the first time 
(Ashkenazi Jewish schizophrenia study, Danish iPSYCH initiative, Genomic Psychiatry Cohort 
[GPC], Pritzker Neuropsychiatric Disorders Research Consortium (Pritzker NDRC), Mclean 
Psychosis study, and UK-Ireland collections)5–9. Combined, from these collections, 24,248 
schizophrenia cases were included in the SCHEMA main analysis.  

 
We included exome samples from the following projects in dbGAP as additional external 

controls: the Alzheimer's Disease Sequencing Project (dbGAP accession: phs000572.v8.p4), 
NHLBI Exome Sequencing Project (dbGAP accessions: 
https://esp.gs.washington.edu/drupal/dbGaP_Releases), and the Myocardial Infarction Genetics 
Exome Sequencing Consortium (dbGAP accessions: phs001000.v1.p1 and phs000806.v1.p1). 
In addition, we aggregated and incorporated published de novo mutations from 3,402 parent-
proband trios of schizophrenia1,4,10–17. Two of these collections, the Bulgarian and Taiwanese 
trios studies, are directly included as part of the SCHEMA consortium call set, and inherited 
variants from these individuals were incorporated. 
 

Sample recruitment and collection are described extensively in the corresponding 
studies and collections. To ensure compatibility with Psychiatric Genomics Consortium (PGC) 
definitions5, we included samples with a diagnosis of schizophrenia and schizoaffective 
disorders in our analysis. In the final analysis, 22,781 individuals were diagnosed with 
schizophrenia, while 1,467 were diagnosed with schizoaffective disorders. Each collection 
provided the Consortium with individual-level information on case status according to study-
specific criteria. Each collection defined sample controls as individuals specifically ascertained 
to not have psychiatric illness, or individuals that were randomly selected from population 
registers. Informed consent was obtained from all participants, and the institutional human 



 

 

subject review and ethics committees relevant to that collection approved the research. Despite 
the collections originating from a number of partner institutions, 22,548 of the 24,248 
schizophrenia cases (and all the new 16,269 samples) were sequenced at the Broad Institute of 
Harvard and M.I.T. and Massachusetts General Hospital.  
 
Table S1 Sample counts in the SCHEMA collections. The number of cases and controls sequenced are displayed, 
along with the number of samples retained after quality control steps. The sequencing technology for each collection 
is highlighted, with the majority sequenced using Illumina or Agilent captures. The Pubmed IDs (PMIDs) of articles 
that describe ascertainment of each collection is provided. 

Study Collection 
Cases 

sequenced 
Controls 

sequenced 
Cases in 
analysis 

Controls in 
analysis 

Sequencing 
assay 

Cases (new 
to this 
report) 

Controls 
(new to this 

report) PMIDs 

UK-Ireland 
schizophrenia study 5593 5559 5232 5362 Illumina Nextera 5232 5362 25056061,29483656 

Swedish schizophrenia 
study 4625 6038 4565 6006 

Agilent 
SureSelect v1, 
Agilent 
SureSelect v2 0 0 24463508,27694994 

WGSPD case-control 
study (genomes) 3906 4671 3547 4418 

Whole genome 
sequencing 3547 4418 31591465 

Danish iPSYCH 
initiative 3526 6116 3270 5570 Illumina Nextera 3270 0 31768057 

Genomic Psychiatry 
Cohort (GPC) and 
Pritzker 
Neuropsychiatric 
Disorders Research 
Consortium (PNDRC) 
case-control studies 
(exomes) 
  3419 5087 3004 4616 Illumina Nextera 3004 4616 31591465 

Taiwanese trios study 1781 3382 1716 1575 

Agilent 
SureSelect v2, 
Illumina Nextera 0 0 31932770 

UK10K schizophrenia 
study 1907 6976 986 4178 

Agilent 
SureSelect v3, 
Agilent 
SureSelect v5 0 0 26974950 

Ashkenazi Jewish 
schizophrenia study 770 2156 721 1901 

Agilent 
SureSelect v2, 
Illumina Nextera 721 1901 26198764 

Bulgarian trios study 621 1134 598 599 

Agilent 
SureSelect v2, 
Agilent 
SureSelect v3, 
NimbleGen 
SeqCap v2 0 0 24463507 

McLean case-control 
study 567 347 493 243 Illumina Nextera 493 243 25740047 

FINRISK population 
study 188 8886 116 7853 

Nimblegen 
SeqCap VCRome 0 0 31367044 

dbGAP controls (ADSP, 
ESP, MIGen) 0 11922 0 8116 

Agilent 
SureSelect v2, 
Illumina Nextera 0 0 

(see Supplementary 
Text for Accessions) 



 

 

Sequence data production 

Sequencing and alignment 
In our meta-analysis, we sought to integrate whole-exome and whole-genome sequence 

data generated over seven years with a number of different sequencing technologies for 
psychiatric gene discovery. Most of the cases (22,548 of the 24,248 schizophrenia cases) were 
sequenced at the Broad Institute of Harvard and MIT using the Illumina HiSeq X platform with 
the use of 151 base pair paired-end reads. Exome samples new to this study (16,269 of 
presented cases) were enriched using the Illumina Nextera capture kit. Exome samples were 
sequenced until 80% of the target capture was covered at 20x, while whole-genome samples 
were sequenced at 20 or 30x. The majority of the remaining exome samples were sequenced 
using the Agilent SureSelect v2 capture (Table S1). All sequencing data, including those 
generated externally and data generated in earlier analyses, were centralized as BAM or 
FASTQ files, and processed uniformly using Picard sequence processing pipeline18, before 
mapped onto the human genome reference build 37 (grch37) using BWA19. This exactly 
followed standard best practice alignment and read processing protocols described in more 
detail in earlier exome analysis publications20,21. 

Variant joint calling 
 Joint calling of all SCHEMA samples was performed using the Genome Analysis Toolkit 
(GATK)22,23. First, GATK (version 3.4) was used to perform local realignment around indels and 
recalibrate base qualities in each sample BAM. We called each sample using HaplotypeCaller, 
generating gVCF files containing every position of the genome with likelihoods for variants or 
the genomic reference. We merged samples into batches of 200 using CombineVCFs, and joint-
called samples using GenotypeVCFs, all using default settings according to the best-practice 
pipeline. We annotated all variants using the Variant Quality Score Recalibration (VQSR) tool in 
GATK (version 3.6). The output consists of a VCF with germline SNVs and indels for all 
samples used in the core SCHEMA analysis. The variant joint calling of SCHEMA samples was 
equivalent to the pipeline used in the generation of the gnomAD database21. 

Sequencing coverage 
 To estimate coverage of the coding region, we randomly sampled 100 individuals from 
each sequencing wave and extracted depth information from their gVCFs. The gVCFs recorded 
information for every position of the exome, which we used to calculate the mean read depth 
(DP) for each coding exon as defined in GENCODE v19 (grch37). Each exonic interval was 
extended by 8 base pairs to include splice regions variants. Because genotype filters from 
earlier exome sequencing studies had identified variants with DP < 10 as low quality, we 
compared the proportion of the coding region with mean DP > 10 in each wave to evaluate 
differences in sequencing quality20,21,24. We observed that exome sequencing waves could be 
separated into two groups - samples generated using the Agilent v2 capture and Illumina 



 

 

Nextera capture (Figure S1). Agilent v2 samples were generated before 2017 and covered 
approximately 85% of the exome at 10x or greater, while Illumina Nextera and whole-genome 
sequenced samples were generated between 2017 and 2019 and covered over 95% of the 
exome at 10x or greater. The difference in coverage contributed in part to the differences in the 
number of variants detected. For each sequencing wave, we defined well-covered regions as 
segments of exome covered 10x or greater in 80% of all samples. When restricting variant 
comparisons to these consensus regions, we find that the number of heterozygous variants and 
transition-to-transversion ratio (TiTv) become comparable between exomes (Figure S2). 
 

 
Figure S1 Percentage of the GENCODE coding region covered at 10x or greater in each sequencing wave. The 
color of each boxplot indicates the exome capture kit used. The sequencing waves are ordered by production date, 
with the newest waves on top and the oldest at the bottom. The coverages appear consistent between samples of the 
same capture, except for the Danish case-control samples which were derived from dried blood spots and therefore 
have slightly lower quality25. 



 

 

 
Figure S2 Number of heterozygous variant and transition-to-transversion ratio in each sequencing wave after 
restricting to coding sequences covered at 10x or greater (within consensus region). The sequencing waves are 
ordered by production date, with the newest waves on top and the oldest at the bottom. The color of each boxplot 
indicates the technology used. The number of heterozygous variants restricted to the consensus region appears 
consistent between most collections and waves, with the exception of the Taiwanese and GPC USC collections, 
which included individuals of non-European ancestry (see Figure S6). 

Sample-level quality control 

Hail for data analysis  
To perform quality control steps on tens of thousands of exomes, we applied and wrote 

methods based on Hail, an open source Python-based library dedicated to the analysis of large-
scale genomic data (website: https://www.hail.is; documentation: https://hail.is/docs/0.1/ and 
https://hail.is/docs/0.2/; GitHub repository: https://github.com/hail-is/hail). Hail leverages the 
scalable infrastructure of Apache Spark with a user-friendly interface in Python to enable the 
processing of terabytes of genomic data. Indeed, this scalable framework has been applied 
widely in other large sequencing projects, including the latest analyses from the Autism 



 

 

Sequencing Consortium and the gnomAD Consortium21,24. In the following sections, we refer to 
specific methods in Hail that perform the following sample- and variant-level quality control 
steps. 

Hard Filters 
 We imported VCFs from joint calling into Hail 0.1 using the import_vcf function, 
generating Variant Dataset files. Using the consensus regions described in the previous section, 
we used Hail’s sample_qc function to generate the following sample metrics from the raw 
variant calls: call rate (callRate), number of heterozygous calls (nHet), number of homozygous 
calls (nHomVar), number of non-reference calls (nNonRef), number of deletions (nDeletion), 
number of insertions (nInsertion), number of singleton calls (nSingleton), number of SNPs 
(nSNPs), heterozygous-homozygous call ratio (rHetHomVar), transition-transversion ratio 
(rTiTv), and insertion-deletion (rInsertionDeletion). Once restricted to consensus regions, the 
sample metrics across sequencing waves and samples followed comparable distributions 
except for individual outliers (Figure S3). Based on the observed distributions, we applied the 
following hard filters to exclude low quality samples: callRate < 0.9, nDeletion < 75 | nDeletion > 
190, nHet < 6500 | nHet > 11000, nHomVar < 4000 | nHomVar > 5750, nInsertion < 55 | 
nInsertion > 150, nNonRef < 11000, nSingleton > 300, nSNP < 15000 | nSNP > 21000, 
nTransition < 11500 | nTransition > 16500, nTransversion < 3500 | nTransversion > 5000, 
rHetHomVar < 1.1 | rHetHomVar > 2.2, rInsertionDeletion < 0.4 | rInsertionDeletion > 1.1, and 
rTiTv < 3.1 | rTiTv > 3.45. The sample metrics were comparable across cohorts after the 
exclusion of sample outliers (Figure S3). 
 
  



 

 

Figure S3 Distributions of raw variant metrics for all SCHEMA samples, restricted to consensus regions. 
Descriptions of each metric are provided in the “Hard Filters” subsection (see above). A small subset of samples were 
observed to have higher total allele counts (e.g. nHet, nNonRef, nTransition, nTransversion). These samples 
originated from the GPC collections and are of non-European ancestry (see Figure S6). 

 
We used Picard to estimate the percentage of chimeric reads per sample, defined as the 
fraction of reads that map outside a maximum insert size or have two ends mapping to different 
chromosomes (https://broadinstitute.github.io/picard/picard-metric-definitions.html). We 
additionally used verifyBamID to estimate the contamination fraction per sample26, and excluded 
all samples with a chimeric or contamination fraction > 0.15. The higher-than-usual threshold 
was chosen due to higher levels of contamination observed in the Taiwanese trio collection, as 
described in an earlier publication 4. We applied a higher allelic balance (AB) filter of 0.25 across 
all samples, as performed in 24 to call de novo mutations, to better exclude individual calls that 
may be contamination artifacts. 

Sex imputation 
The sex of each sample was inferred using the inbreeding coefficient of chrX variants (F-

statistic) and the mean depth of non-pseudoautomal variants on chrY. The F-statistic was 
estimated using Hail’s impute_sex function from chrX variants with call rate ≥ 0.97, allele 
frequency (AF) ≥ 0.5%, and mean depth (DP) ≥ 7. High-quality variants on chrY were defined as 
non-PAR variants observed in 1000 Genomes Phase 3, and with a mean DP ≥ 3.5. Samples 
with F-stat ≥ 0.8 were classified as female, and samples with F-stat ≤ 0.2 were classified as 



 

 

male. Samples with a mean DP ≥ 10 in chrY variants were inferred to have a Y chromosome; 
those with a mean DP ≤ 3 were inferred to not have a Y chromosome. Concordance between F-
statistic and chrY depth inference were required to identify samples as male or female, and we 
excluded all other individuals from the analysis (Figure S4). 
 
Figure S4 Sample F-statistic plotted against sample chrY variant mean depth. Each dot is a different sample in the 
SCHEMA call set. Samples with F-statistics ~ 0 and mean chrY coverages ~ 0 are imputed to be male, and samples 
with F-statistics ~ 1 and a non-zero chrY coverage are imputed to be female. The remaining samples have either low 
sequencing quality or have chromosomal abnormalities. 

 

Population inference 
For population and cryptic relatedness inference, we restricted our analysis to a subset 

of high-quality SNPs based on genotype and variant-level filters. First, genotypes were required 
to have depth (DP) ≥ 7, homozygous allelic balance (AB) < 0.1 or 0.2 ≤ heterozygous AB ≤ 0.8, 
and genotype quality (GQ) ≥ 20. After genotype filters, we retained biallelic SNPs with a mean 
depth ≥ 7, allele frequency (AF) ≥ 0.01, and call rate ≥ 0.98. We retained 56,818 SNPs for 
sample QC. These variant filters were only used as a first-pass to identify high-quality samples, 
and not for the main meta-analysis. 

 
We imputed the ancestry of SCHEMA individuals using principal components analysis 

on a subset of unrelated samples with known ancestry to form the basis. Most reference 
samples originated from the 1000 Genomes Project phase 3 release, with additional samples 
with reported Ashkenazi Jewish, Estonian, and Finnish ancestry2,27. We first performed LD-
pruning on the remaining SNPs (max r2 < 0.1). We then computed the top 10 principal 
components (PCs) using these samples, and projected the remaining samples onto these PCs 
(Figure S5). We trained a random forest model on the reference samples, and used this model 
to predict global ancestries on the remaining samples, with a threshold probability of 0.7. 
Samples were assigned the following global populations: European (EUR), Finnish (FIN), Latino 
American (AMR), African American (AFR), East Asian (EAS), Ashkenazi Jewish (ASJ), Estonian 



 

 

(EST), and South Asian (SAS). Samples with a probability of < 0.7 were excluded. The 
proportion of imputed ancestry in our collection appeared reasonable given the institute of origin 
from which individuals were recruited; for example, a small fraction of FIN individuals were 
observed in the Estonian and Swedish collections, while the GPC collections contained by 
design contained individuals of AMR and AFR ancestry (Figure S6). 
 
Figure S5 Principal components analysis of SCHEMA samples using 1000 Genomes individuals with reported 
ancestries as basis. Cases and controls in our call set are labelled as red and blue respectively. Reference samples 
from the 1000 Genomes Project are displayed as larger dots in the background, and colored by reported ancestries. 
We display scatterplots of PC1, PC2, and PC3 to highlight the existing substructure. 

 
Figure S6 Ancestry assignment by random forest as proportion of each collection. Each sample is assigned a 
global ancestry based on probabilities from the random forest model. Collections have different ascertainment and 
design, and we see reasonable concordance between country of origin and imputed ancestries. 

 



 

 

Relatedness and parent-proband trios 
 We applied the PC-Relate method in Hail 
(https://hail.is/docs/0.2/methods/genetics.html#hail.methods.pc_relate) to estimate pairwise 
kinship coefficients (Φij) between all pairs of samples with the same assigned global ancestry28. 
We restricted our analysis to LD-pruned SNPs (max r2 < 0.1) with AF > 0.05 and call rate > 0.98. 
The top 5 PCs were included in the method to correct for population structure in the kinship 
calculation. We then used Φij from PC-Relate to identify clusters of related individuals. We 
inferred the following relationships based on Φij: Φij > 0.354 were duplicates or monozygotic 
twins, 0.177 > Φij > 0.354 were first-degree relatives, and 0.0884 > Φij > 0.177 were second-
degree relatives (Figure S7)29. We pruned clusters of related individuals to ensure that no two 
samples were second-degree or closer in relations. In edge cases in which multiple options for 
pruning existed, we prioritized the retention of cases first before prioritizing the total number of 
unrelated samples.   
 

The Taiwanese and Bulgarian data sets were designed to study de novo mutations in 
schizophrenia through the recruitment of parent-proband trios. Using the calculated kinship 
coefficients, we were able to confirm the pedigrees of 2,304 trios (Figure S7). De novo 
mutations in these samples had previously been called1,4. For inclusion in the case-control 
meta-analysis, we generated “pseudo-controls” from untransmitted alleles from both parents in 
each trio. We ensured that the parents used to generate these pseudo-controls were unrelated, 
and that the resulting pseudo-controls also met the hard filters required for inclusion in the meta-
analysis.  
 
Figure S7 Relatedness analysis of samples in the SCHEMA call set using PC-relate. A. Histogram of kinship 
coefficients (Φij) > 0.04.  B. Scatter plot and density plot of kinship coefficients v P(IBD = 0), or the proportion of loci 
in which individuals share zero alleles IBD. Dark red indicates a greater density of samples. We infer likely first-, 
second-, and third-degree relatives in the SCHEMA call set using Φij. 

 
  



 

 

Final sample counts for analysis 
After all the steps of sample QC, we identify 24,248 cases and 50,437 controls for analysis 
(Table S2). 
 
Table S2 Number of case-control samples excluded by sample QC criteria. Each QC criterion is described in the 
Supplementary Text. Is Case: TRUE indicates schizophrenia case, FALSE indicates control. For each of the QC 
criteria, TRUE indicates the corresponding row of samples have been excluded from the analysis. 

Is Case 
(Fail) Quality 

Filters 
(Fail) 

Contamination 
(Fail) Ancestry 

Assignment 
(Fail) Sex 

Imputation 
(Fail) 

Relatedness Counts 

FALSE FALSE FALSE FALSE FALSE FALSE 50437 

TRUE FALSE FALSE FALSE FALSE FALSE 24248 

FALSE FALSE FALSE FALSE FALSE TRUE 6377 

TRUE FALSE FALSE FALSE FALSE TRUE 1827 

FALSE TRUE FALSE FALSE FALSE FALSE 558 

FALSE FALSE FALSE TRUE FALSE FALSE 542 

TRUE FALSE FALSE TRUE FALSE FALSE 407 

TRUE TRUE FALSE FALSE FALSE FALSE 236 

FALSE FALSE FALSE FALSE TRUE FALSE 154 

TRUE FALSE FALSE FALSE TRUE FALSE 132 

FALSE TRUE TRUE FALSE FALSE FALSE 25 

TRUE FALSE FALSE TRUE TRUE FALSE 20 

FALSE TRUE FALSE TRUE FALSE FALSE 18 

FALSE TRUE FALSE TRUE TRUE FALSE 16 

FALSE TRUE TRUE FALSE TRUE FALSE 11 

FALSE TRUE FALSE FALSE FALSE TRUE 10 

Variant-level quality control 
To arrive at a high-quality set of variants for analysis, we applied site and genotype 

filters in an attempt to increase the number of true positive calls, while reducing the number of 
false negatives. Analogous genotype and site filters had previously been applied in other 
sequencing analyses of complex traits3,24,25,30. At the genotype level, we retained individual calls 
if they had a genotype quality (GQ) ≥ 20, allelic balance (AB) < 0.1 in homozygous calls, allelic 
balance (AB) ≥ 0.25 in heterozygous calls, and depth (DP) ≥ 10. After applying genotype filters, 
we excluded variants with call rates < 0.9 or if they resided within low-complexity regions 
(LCR)31. In addition to the hard filters, we applied the Genome Analysis Toolkit (GATK) Variant 
Quality Score Recalibration (VQSR) model to remove low-quality variants based on sequence 



 

 

annotations from variant calling. We used the recommended annotations and training data sets 
as suggested by GATK best practices 
(https://gatkforums.broadinstitute.org/gatk/discussion/23216/how-to-filter-variants-either-with-
vqsr-or-by-hard-filtering); the VQSR model applied on our data set was the same as the one 
applied on the gnomAD database21. We excluded variants that failed VQSR for both SNPs and 
indels, according to default settings.  

Variant annotation 
The Ensembl Variant Effect Predictor (VEP) v85 was used to annotate all variants 

according to the GENCODE v19 reference32,33. The full pipeline was implemented in Hail 0.1 
(https://hail.is/docs/0.1/hail.VariantDataset.html?highlight=vep#hail.VariantDataset.vep), with 
the LOFTEE annotation provided as default 
(https://github.com/konradjk/loftee/tree/27b0040f524348baa7f3257f1ce58993529e09ef). Similar 
to other sequencing analyses, we considered frameshift, stop gained, splice acceptor and donor 
variants as putative protein-truncating (or loss-of-function) variants2,20. All predicted variant 
consequences were defined according to the GENCODE canonical transcript. To further 
prioritize missense variants, we annotated all variants using Hail 
(https://hail.is/docs/0.1/annotationdb.html) with classifiers included in the dbNSFP database 
(such as CADD and PolyPhen), and the MPC score34,35. The MPC score had been successfully 
used to prioritize missense variants in neurodevelopmental disorders, and we later empirically 
show that variants with a high score were significantly enriched for schizophrenia risk24,36. In 
total, our case-control data set contained 5,649,811 protein-coding variants after QC steps. 

Gene set enrichment analysis 

Statistical approach 
 Gene set enrichment analyses aggregate rare variants across a large number of genes 
to test specific biological hypotheses related to disease pathophysiology and pathogenesis. 
Similar to common variant GWAS, these analyses relied on individual-level data for regression 
models that correct for ancestry-level principal components and technical covariates, and would 
not include joint analysis with external count data from gnomAD database 3,25,30. For global 
analyses of enrichment, we identified subsets of each collection with over 100 samples that had 
well-matched capture technologies and inferred ancestry.  Additionally, we ran a second round 
of PCA for each global population separately to generate population-specific PCs for use as 
covariates. In total, we identified 22,444 cases and 39,837 controls forming 16 analytical groups 
that had matched exome coverage, ancestry, and originated from the same population. This 
sample definition was more restrictive than the ancestry-assignment used for count-level meta-
analysis with gnomAD samples, and would only be used for global analyses aggregating 
hundreds of genes for genotype-dependent enrichment analyses. 
 



 

 

 We tested for enrichment by regressing schizophrenia status on the total number of 
ultra-rare damaging variants in the gene set of interest (Xin) while correcting for the total number 
of ultra-rare coding variants in the genome (Xall), sex, and five ancestry-derived principal 
components. Xall controlled for exome-wide differences between schizophrenia cases and 
controls, ensuring that any result was significant above baseline differences. We performed 
logistic regression on each of the 16 sample groups using Hail’s linreg function 
(https://hail.is/docs/0.2/guides/genetics.html#single-phenotype), and meta-analyzed the betas 
and standard errors from each regression using inverse-variance weighting.  
 
 We first replicated an earlier result that demonstrated that rare coding variants are 
concentrated in genes under strong constraint in schizophrenia cases compared to 
controls3,20,30. As in those earlier studies, we tested for enrichment in protein-truncating, 
damaging missense (MPC > 2), other missense (MPC < 2), and synonymous singleton (minor 
allele count [MAC] = 1) variants, and found consistent signal in constrained genes in the 
SCHEMA cohorts (Figure S8). We investigated the strength of enrichment in different variant 
consequences, and found the strongest signal to be in PTVs (both LOFTEE high-confidence 
and lower-confidence) and damaging (MPC > 2) missense variants (Figure S9). These results 
were consistent with the mutability-adjusted proportion of singletons (MAPS) of functional 
categories from the analysis of large reference exomes, and observations from other 
sequencing studies of neurodevelopmental disorders21,24. As elaborated on later, we will focus 
on these functional classes in subsequent analyses.  



 

 

Figure S8 Schizophrenia case-control enrichment in constrained genes (pLI > 0.9) in different SCHEMA cohorts. 
The odds ratio and standard error of PTVs and Synonymous variants are provided for each cohort. The meta-
analyzed odds ratio and standard error is calculated using inverse-variance. PTVs show consistent signals across the 
different cohorts, and synonymous variants do not deviate from expectation.

 
Figure S9 Schizophrenia case-control enrichment in constrained genes (pLI > 0.9) stratified by different variant 
annotations and inferred consequences. LoF: all loss-of-function or PTVs; LoFHC: high-confidence LOFTEE PTVs; 
LoFLC: low-confidence based on LOFTEE; MPC > 3: missense variants with MPC > 3; MPC 2 - 3: missense variants 
with MPC 2 - 3; Other missense: missense variants with MPC < 2; Syn: synonymous variants.

 
After replicating the known constrained gene result and confirming consistent signals across 
SCHEMA cohorts, we applied the method to test for enrichment in gene sets based on public 
databases, other more targeted hypotheses about schizophrenia risk, and other genome-wide 
screens investigating rare variants in other neurodevelopmental disorders. The strongest 
signals came from PTVs (LOFTEE high-confidence and low-confidence) and damaging 
missense (MPC > 3) variants. Motivated by this, we generated enrichment P-values for Class I 
(PTV + MPC > 3) and Class II (MPC 2 - 3) variants separately for each gene set. To calculate a 



 

 

single test statistic for each gene set, we meta-analyzed the P-values using Fisher’s combined 
probability method with df = 4.  

Description of gene sets 
 When defining gene sets for analysis, we mapped all gene identifiers to the GENCODE 
v.19 release, and all non-coding genes were excluded. Here, we describe the main gene sets 
used in our analysis. Genic constraint We used the pLI metric calculated in the gnomAD 
database as a measure of per-gene selective constraint20,21. In total, 3,063 genes had a 
probability of pLI > 0.9, which we defined as loss-of-function intolerant. We additionally tested 
for enrichment in the remaining set of 16,134 pLI < 0.9 genes. These enrichment results are 
displayed in Table S4. Public pathway databases To broadly prioritize schizophrenia-relevant 
processes, we tested for enrichment in 1,732 gene sets defined in an earlier study and 
aggregated from five public databases, including Gene Ontology, KEGG, PANTHER, 
REACTOME, and the Molecular Signatures Databases (MSigDB) hallmark processes30. In 
addition, a number of gene sets specific to nervous system biology were also included, including 
translational targets of FMRP37, chromatin targets of CHD838, splice targets of RBFOX39, 
components of the postsynaptic density40, and neuronal gene lists from the Gene2Cognition 
database41. These results are displayed in Table S8. SynGO Because of the specific 
enrichment of synaptic processes in common and rare risk alleles in schizophrenia, we tested 
for enrichment in ontology terms defined by the SynGO consortium42. The resource 
systematically annotated synaptic genes and processes after accumulating available research 
about synaptic biology. We acquired the bulk release from the SynGo website, and tested for 
enrichment in the 110 biological process (BP) and cellular components (CC) terms that contain 
at least 10 genes. These results are displayed in Table S7. Gene expression from GTEx To 
test for tissue-specific enrichments, we used gene sets defined in an earlier report that 
prioritized disease-relevant tissues using common variant data43. Briefly, that study computed a 
per-gene t-statistic for specific expression in a focal tissue compared against all other tissues, 
and identified the 10% of genes with the highest t-statistic as enriched in that tissue type. They 
defined enriched genes in this manner for 43 GTEx tissues44. They additionally identified 
enriched genes between the 13 brain tissues in GTEx for prioritizing specific regions for brain 
disorders. Results on these gene sets are displayed in Table S8 and S9. 
 
Association studies We specifically explored schizophrenia rare variant enrichment in genes 
implicated by other genome-wide scans of common variants and broader neurodevelopmental 
disorders. To investigate the shared genetic signal with common risk variants, we tested for 
enrichment in genes prioritized from the largest GWAS of schizophrenia to date, which identified 
associations at 270 distinct loci45. Statistical fine-mapping using FINEMAP prioritized 76 genes, 
of which 69 are protein-coding46. A recent analysis of de novo mutations from 31,058 DD/ID 
trios implicated 299 genes47, and a parallel analysis of 11,986 ASD cases identified 102 genes 
at FDR < 10%24. These genes are listed in Table S11, and the corresponding enrichment results 
are displayed in Table S12. 



 

 

Incorporation of external controls 
To increase power for gene discovery, we incorporated external samples from non-

psychiatric and non-neurological collections aggregated and called as part of the gnomAD 
consortium effort. The inclusion of these samples introduced technological and methodological 
challenges that need to be addressed. First, only aggregated variant counts could be acquired 
due to the design and mission of the gnomAD consortium; as such, analytical methods applied 
here would necessarily be limited to count-based data. Second, the external count data must be 
stratified in a way that allows for the control of potential batch effects from ancestry and capture. 
Fortunately, gnomAD samples were well-matched with the SCHEMA samples for the following 
reasons. First, the majority of the gnomAD data were also generated at the Broad Institute of 
Harvard and M.I.T., and Agilent v2 and Illumina Nextera were similarly the most commonly used 
capture kits (35.47% and 47.42% of all samples respectively). Second, all samples in gnomAD 
and SCHEMA efforts were re-processed and joint called using the same pipeline. We 
additionally applied the same genotype and site filters to the gnomAD subset that excluded 
SCHEMA samples. Therefore, we need only aggregate variant counts by exome capture and 
global ancestry before jointly analyzing with SCHEMA. 

Concordance with imputed platform and ancestry 
The gnomAD consortium performed platform imputation to infer the capture and 

sequencing platform metadata from all samples21. Briefly, they ran PCA on variant call rates in 
exome capture intervals and identified sample clusters using HBDSCAN. Because a large 
number of our samples were included as part of the gnomAD v2 release, we checked the 
concordance between imputed and known capture in 47,345 samples. Here, we observed a 
concordance of 99.9%, suggesting that we could accurately impute platform from gnomAD 
samples for case-control matching. 

 
Similarly, appropriate ancestry matching was required to jointly analyze our samples with 

counts from the gnomAD database. In samples shared between SCHEMA and gnomAD, we 
checked the concordance of imputed ancestry between gnomAD and our random forest model. 
Concordance of 97.7% was observed between SCHEMA and gnomAD imputed ancestries, 
suggesting that the population assignment was reasonably well-matched between the two data 
sets. 

Final sample counts for meta-analysis 
After excluding all SCHEMA samples, we generated variant-level counts from gnomAD 

stratified by imputed capture and ancestry. The gnomAD platform assignment identified 16 
different captures, of which 82.89% of samples were generated using only two captures (Agilent 
v2 and Illumina Nextera)21. Because some of the remaining captures may not be well-
represented in our exome coverage analysis, we excluded all gnomAD samples that were not 
generated using the Agilent v2 and Illumina Nextera captures. In total, we identified counts from 
46,885 gnomAD samples (46,465 exomes and 420 genomes) for inclusion in our meta-analysis. 



 

 

When combined with counts from SCHEMA, we identified 11 strata based on sequencing 
platforms and inferred population (Table S3). In total, the meta-analysis included variants counts 
from 24,248 cases, 50,437 internal controls, and 46,885 external controls. 
 
Table S3 Number of case-control samples included in the count-based case-control meta-analysis. We provided 
sample counts per stratum, and control numbers are split between samples included in the SCHEMA call set and 
external samples from gnomAD. 

Stratum Cases Controls (SCHEMA) Controls (gnomAD) 

All samples 24248 50437 46885 

EUR (Exomes) 8874 19074 23561 

EUR (Exomes, non-Nextera) 7277 11187 0 

AMR (Exomes) 1388 3146 12008 

FIN (Exomes, non-Nextera) 944 7984 3542 

EAS (Exomes) 1730 1607 6806 

AFR (Whole Genomes) 2245 1170 420 

ASJ (Exomes) 869 2415 548 

EST (Whole Genomes) 261 2281 0 

FIN (Whole Genomes) 423 655 0 

AFR (Exomes) 127 765 0 

SAS (Exomes) 110 153 0 

 

Strategy for meta-analysis 

Incorporation of two classes of pathogenic variants for gene 
discovery 

To increase power for discovery, we enriched for pathogenic variants by restricting our 
analysis to ultra-rare variants (minor allele count [MAC] ≤ 5 studywide) that are either PTVs 
(defined as stop-gained, frameshift, and essential splice donor and acceptor variants) or 
missense variants prioritized by a pathogenicity classifier. We sought to empirically evaluate 
which classifier most significantly enriched for damaging missense variants using external 
sequencing data sets of other neurodevelopmental disorders. We annotated de novo mutations 
from published ASD, DD/ID, and unaffected (sibling) trios with CADD, PolyPhen, and MPC 
missense annotations24,48. Using the Poisson exact test, we determined which classifier resulted 
in the most significant difference in de novo rates between affected and unaffected (sibling) 



 

 

probands. The MPC classifier most powerfully prioritized damaging missense variants in both 
ASD and DD/ID trios (Figure S10). Furthermore, missense variants at the top bin of 
pathogenicity (MPC ≥ 3) have a global signal on par with PTVs in schizophrenia and 
neurodevelopmental disorders, while variants with MPC ≥ 2 have a significant but weaker signal 
than PTVs. We confirmed this result by analyzing the case-control burden of an independent 
case-control data set of autism and ADHD49, and observed that MPC ≥ 3 and MPC ≥ 2 were 
also significantly enriched for rare variant risk (Figure S11). Motivated by consistent 
observations across data sets and types of genetic variation, we chose to meta-analyze three 
classes of variants (PTVs, missense variants with MPC > 3 and MPC 2 - 3) for the purposes of 
gene discovery. 
 
Figure S10 Results from Poisson exact tests quantifying the strength of enrichment after stratifying de novo 
mutations by variant consequences and missense classifiers. For demonstrative purposes, we show the difference in 
enrichment using MPC, CADD and PolyPhen-2. A: The enrichment analysis is across all protein-coding genes. B: 
The comparison is restricted to constrained genes (pLI > 0.9). All tests other than PTV restrict to missense variants. 
PolyPhen D: predicted damaging by Polyphen; All missense: no classifier applied. 
A. 

 
 
B. 

 



 

 

Figure S11 Enrichment of URVs in ASD and ADHD cases compared to controls stratified by variant annotation and 
consequences  in constrained genes (pLI > 0.9). Results were calculated using logistic regression as described for 
schizophrenia case-control samples in the Supplementary Text. 

 
 

In earlier exome sequencing studies, various allele frequency thresholds had been 
applied to enrich for pathogenic protein-coding variation, including restricting analyses to 
singletons (MAC = 1)3,40, MAC <= 525, MAF < 0.1% or 0.5%40, and exclusion based on presence 
in a public reference50. To better understand which frequency cut-off to use in our analysis, we 
tested for enrichment of PTV and missense > 2 variants in constrained (pLI > 0.9) genes in two 
additional frequency bins: MAC 2 - 5 and MAC 6 - 10 as defined in our data set. We applied the 
same approach used for gene set enrichment analyses, meta-analyzing the signal from Class I 
and Class II variants. We observed a signal for both Class I and II variants in the MAC 2 - 5 bin 
(Pmeta = 9.6 x 10-4; PClass I = 0.023; PClass II = 0.0075), and limited to no enrichment in the MAC 6 - 
10 bin (Pmeta = 0.046; PClass I = 0.061; PClass II = 0.23). This result is consistent with the allele 
frequencies of PTVs disrupting the 3,063 constrained genes in our call set: of the 28,096 total 
PTVs, 20,632 (73.4%) were singletons, and 27,067 (96.3%) were MAC < 5. Therefore, similar to 
an earlier analysis of ASD exome sequence data24,25, we restricted our gene discovery analysis 
to variants with MAC < 5. At this frequency cut-off, the genotype matrix for PTVs and MPC > 2 
variants was very sparse, with most samples carrying no PTVs or MPC > 2 variants in a single 
gene. In the 24,248 cases and 50,437 controls for which we have full genotype data, the gene-
by-sample matrix (74,685 samples x 18,321 genes = 1,368,303,885 entries) created by 
aggregating up the total number of PTV and MPC > 2 alleles in each gene and each individual 
had only 318,562 non-zero entries, of which nearly all (315,624 or 99.1%) had a total of one allele. 



 

 

Robustness of combined analysis 
We conducted the following analyses to ensure the robustness of the results generated 

by this approach. First, we find that Fisher’s exact tests of synonymous variants performed on 
each stratum controlled well for Type I error rates (Figure S12). In these tests, we observed a 
deflation of test statistics in strata with small sample sizes due to low observed alleles in each 
gene. Second, we observed no inflation of synonymous P values in genes with total alleles 
counts > 10, > 50, and > 100 where we have greater power to detect potential artifacts, even 
when using the Mantel–Haenszel test (Figure S14). Third, we observed the expected null 
distribution of P values in our gene-based tests when analyzing synonymous variants (Figure 
S13). 
 
  



 

 

Figure S12 QQ plot of gene burden P-values calculated in each stratum using Fisher’s exact test. We display gene 
burden P-values for Class I (PTV and MPC > 3; dark red), Class II (MPC > 2; orange), and synonymous variants 
(yellow).  Strata were sorted by total sample size from left to right, top to bottom. Some deflation is observed due to 
low per-gene counts based on the asymptotic properties of the Fisher’s exact test. 

 
  



 

 

Figure S13 QQ plot of gene burden P-values of synonymous variants with and without strata adjustment. The 
uncorrected P-values were calculated from the naive Fisher’s exact test not adjusting for strata, and the permuted 
Fisher’s exact test adjusted for strata. 

 
 
Figure S14 QQ plot of gene burden P-values of synonymous variants calculated using the Mantel-Haenszel test at 
four different gene-wide allele count thresholds. When restricting to Alleles > 0, all genes were included. When 
restricting to Alleles > 10, only genes with a total allele count of > 10 across cases and controls are included. Gene-
wide count thresholds of 50 and 100 are also included. 

 
  



 

 

Figure S15 Histogram of odds ratios from the synonymous Mantel-Haenszel test at four different gene-wide allele 
count thresholds. 

 

Permutation-based Fisher exact test for gene discovery 
Because only summary-level variant counts were available for the external controls, we 

tested for an excess of disruptive variants per gene using a Fisher’s exact test in which 
statistical significance was determined by case-control permutations within each population 
stratum (Table S3). The sparsity of the observed count data, as discussed in the previous 
section, suggested that the exact test would be an appropriate choice to test for burden. To 
evaluate significance, we first calculated the observed P-value (P0) from the exact test of the 
observed counts. We then randomly shuffle the observed counts between case and control 
samples within each stratum to calculate null P-values that controlled for ancestry and batch-
specific differences. We performed 1 million permutations to generate the null distribution, and 
calculated per-gene P-value as the proportion of permuted P that was less than or equal to P0. 
For genes with P ≤ 1 x 10-3, we performed 50 million permutations in a similar manner to 
generate a more accurate estimate of the true P-value. When performed on synonymous 
variants, stratified permutation sufficiently controlled for ancestry and batch-specific differences 
when compared to an unstratified exact test, providing confidence that our approach adequately 
controlled for false positives (Figure S13). 
 

We first tested the burden of Class I variants (PTVs and mis3) to generate a P-value for 
18,321 genes. Shown earlier, we found the strongest enrichment in PTVs (both high- [HC] and 
low-confidence [LC] LOFTEE) and MPC > 3 variants (Figure S9, Figure S10, Figure S11). 
Notably, LC PTVs as a class were marginally less enriched than high-confidence PTVs, and 
only a small fraction of genes have any MPC > 3 missense variants. While 18,051 genes have 



 

 

at least one PTV in cases or controls within our sample, only 1,131 genes have any MPC > 3 
missense variants, and 7,594 genes have one or more LC PTV variants. Thus, it would be 
useful to consider a test for high-confidence PTV burden alone for all genes in addition to tests 
that include LC PTVs and MPC > 3 variants. Crucially, these tests would be highly correlated 
since a test of all PTVs and MPC > 3 variants contain all variants included in a test of HC PTVs. 
To leverage this property, we adopted the min-P procedure to empirically correct for multiple 
testing, as described in 40,51. For each gene, we performed burden tests of HC PTVs, all PTVs, 
HC PTVs and MPC > 3 variants, and all PTVs and MPC > 3 variants. The same order of 
permutations was applied for across all tests of the same gene, and the minimum P value for 
each permutation across all tests were retained. A joint null distribution of these minimal P 
values was used to determine the significance of each gene, providing control of the family-wise 
Type I error rate across tests. For each gene, we report the smallest P-value from the tests of 
Class I variants.  
 
Figure S16 QQ plot of case-control P-values of gene burden tests of Class I, Class II, and synonymous variants. 
Gene P-values for Class I, Class II, and synonymous variants are calculated using the permuted Fisher’s exact test. 
The meta-analysis gene P-value is calculated from the weighted Z-score method. 
 

 

Combining Class I and Class II variants with empirical weights 
 For each gene, we additionally calculated a combined P-value of Class I and Class II 
variants. Using the permuted Fisher’s exact test, we first calculated a burden P-value of Class II 
missense variants in 4,512 genes with MPC > 2 variants. We then meta-analyzed Class I and 
Class II P values using the weighted Z-score method, or Stouffer’s method52. To appropriately 
consider the information content between Class I and II variants, we defined the relative weight 
as the ratio of the standardized effect sizes of these classes of variants as observed from 
enrichment analyses of constrained genes (Figure 1C, Figure S11). For Class I variants, we find 
w1 = 𝛽 / 𝜎2  = 0.233/0.0183; for Class II variants, w2 = 𝛽 / 𝜎2

 = 0.058/0.018. The relative weight 
between the two classes is 3.97. In total, we performed 18,321 independent tests for Class I 



 

 

variants, and 4,512 tests for a combined test of Class I and II variants, for a total of 22,833 tests 
(Figure S16). The reported case-control odds ratios and confidence intervals were calculated 
from raw counts without taking into account ancestry and batch-specific differences. 

Incorporation of de novo mutations from schizophrenia trios 
 We aggregated and re-annotated validated de novo mutations from 10 published studies 
of schizophrenia trios for analysis with our case-control cohort1,4,10–17. De novo mutations from 
3,402 parent-proband trios were available for joint analysis. We modeled the recurrence of de 
novo mutations as the Poisson probability of observing ≥ N de novo mutations in a gene given a 
baseline gene-specific mutation rate53. The gene-specific mutation rates had been applied in 
analyses of large-scale neurodevelopmental disorders and autism spectrum disorders24,47. We 
additionally adapted the model to produce mutations rates for MPC > 2 and MPC > 3 missense 
variants, which allow us to calculate the Poisson probabilities of observing Class I and Class II 
de novo mutations. For each gene of interest, we calculated a Poisson P-value for Class I 
mutations and a P-value for Class I and II mutations. 
 

Previous studies have successfully integrated case-control and de novo mutations for 
gene discovery in neurodevelopmental disorders. In our study design, the case-control analysis 
has greater power for gene discovery due to much larger sample size. Furthermore, unlike other 
neurodevelopmental disorders which are significantly enriched for de novo mutations, de novo 
mutations in schizophrenia are apparently much sparser2. Indeed, only 325 genes had one or 
more de novo protein-truncating variants, while only 449 genes had one or more Class I (PTV + 
MPC > 3) and II (3 > MPC > 2) mutations. The remaining genes in the genome had no signal in 
the class of variants most enriched for schizophrenia risk. In addition, only 18 genes had the 
more unlikely event of two or more de novo PTVs, while 35 genes had two or more Class I and 
II de novo mutations. Despite this, we found that de novo Class I and Class II variants are 
enriched for 244 genes with P < 0.01 in our case-control analysis (Figure 1D).  

 
Motivated by these observations, we used de novo P values to increase power for the 

244 genes with Pmeta < 0.01 in our case-control analysis (Figure S17). For each of these genes, 
we calculated a Poisson P-value for Class I mutations and a P-value for Class I and II 
mutations, and meta-analyzed the de novo and the case-control burden P-values using the 
weighted Z-score method. We report the minimum P value across these tests (case-control only 
[no de novo, 22,833 tests], de novo Class I and case-control [244 tests], de novo Class I and II 
and case-control [244 tests]) as the study-wide P value. To identify the ideal weight, we 
simulated uniform chi-square values for the de novo test, and calculated the equivalent chi-
square value for the case-control test as a multiple of the de novo value. We set this multiple as 
6 since there was approximately six times the number of cases in our case-control data set than 
in the trio data set. We then transformed the chi-square values to P-values and meta-analyzed 
them using the following weights in the weighted Z-score method: wi: {0.5, 1.0, 2.0, 5.0, 10.0, 
15.0}. The minimal P-value was not achieved using neither equal weighting (1.0) nor by 
dramatically over-weighting (> 5.0) the case-control P-value. From these results, we applied a wi 

= 2 to combine the case-control and de novo P-values, although we note that the top 10 genes 



 

 

remain exome-wide significant even if equal weighting (wi = 1) was applied. When including the 
de novo stage, we performed 23,321 (18,321 + 4,512 + 244 x 2) tests for the purposes of gene 
discovery, which results in a Bonferroni threshold of 2.14 x 10-6. 

 
Figure S17 QQ plot of case-control and de novo combined gene P-values, case-control only gene P-values, and 
synonymous gene P-values.  

 

Gene set enrichment results 
 Full enrichment results were displayed in Table S4, Table S6 to S9, and Table S11. In 
Figure S18, we show the distribution of test statistics from the 1,732 gene sets derived from 
databases of biological pathways and experimental data. As expected, synonymous variants 
had limited enrichment while a strong aggregate signal was observed for PTVs and MPC > 2 
missense variants in synaptic and neuronal pathways. We additionally displayed rare variant 
enrichment in GTEx tissues in Figure S19, which highlighted the notable enrichment of risk 
URVs in brain tissues. 
 
  



 

 

Figure S18 QQ plot of the enrichment analyses of the 1,732 gene sets derived from databases of biological 
pathways and experimental data. We display the gene set burden statistics of different variant classes (Class I, Class 
II, other missense [MPC < 2], and synonymous variants) alongside the meta-analyzed test statistics integrating Class 
I and Class II variants (Combined). We label the gene sets with P < 2.9 x 10-5, the Bonferroni threshold correcting for 
the described tests (Table S6). 

 
 
Figure S19 Schizophrenia case-control gene set enrichment in brain and non-brain GTEx tissues. We test for the 
burden of rare PTVs in genes with the strongest specific expression in that tissue type relative to other tissues as 
defined in Finucane et al. Each bar is a different tissue in GTEx, grouped by whether it is part of the central nervous 
system and sorted by P-value (Table S8).  

 



 

 

Spatiotemporal expression of risk genes 
Single cell atlas To prioritize cell types as possibly involved in schizophrenia, we investigated 
which cells show the highest specific expression for the 32 FDR < 5% schizophrenia genes. We 
re-processed data from a single cell atlas of the mouse nervous system based on the RNA 
sequencing of half a million cells54. First, we downloaded the raw cell count data with cluster 
annotations from that study. Within each defined cell type, we summed the UMIs for each gene, 
and normalized these counts by dividing by the total UMIs across all genes in that cell type. This 
value, which we called p, represented the proportion of total UMIs in a cell type that were of the 
gene of interest. To enable comparisons of genes between clusters, we re-scaled the p of each 
gene to have mean 0 and standard error of 1, essentially turning ps into Z-scores. A cell type 
with a high Z-score for a particular gene suggested that the expression of that gene was higher 
in that cluster than in the remaining clusters. We restricted subsequent analyses to mouse 
genes that mapped to equivalent human protein-coding genes, leading to a Z-score matrix of 
16,198 genes by 265 cell types. For each cell type, we performed a one-sided Wilcoxon rank 
sum test comparing the expression Z-scores of the 32 FDR < 5% genes against the values of all 
remaining genes. We reported the P-values of these 265 tests in Table S10. Because of the 
correlated expression patterns of different neuronal types and incompleteness of existing cell 
atlases, it would be difficult to prioritize individual cell types. However, when subdividing these 
cells into neurons and non-neurons (glial, astrocytes, vascular, and immune cells) and by region 
(CNS and PNS), it was clear that the bulk of the signal is for neurons in the CNS and not for 
non-neurons or PNS cells (Figure S20). 
 
Figure S20 Strongest relative expression of schizophrenia-associated genes in single cell data from the mouse 
central nervous system. For each cell type, the distribution of normalized expression values is compared between 
schizophrenia risk genes (FDR < 5%) and all other genes using a Wilcoxon rank sum test. Each dot is a single cell 
type as defined in Zeisel et al. (2018) stratified by four anatomical locations. 

 

 
  



 

 

Temporal expression To investigate temporal expression of risk genes, we acquired bulk 
RNA-seq data from Brainspan, an atlas of the developing human brain55. The available data 
included brain tissue collected from 42 individuals that profiled up to 16 distinct regions 
spanning pre- and postnatal-development. We acquired the expression matrix from the 
BrainSpan website, and converted the RPKM to TPM values by normalizing the total transcripts 
per sample to one million. Because available brain regions differed between early prenatal and 
postnatal samples, we averaged the TPM across all brain regions per donor to serve as an 
estimate of temporal expression across the whole human brain. Each donor was assigned to a 
specific developmental period as defined by the BrainSpan data set (Figure 3B and Figure S24). 
Because of low numbers for postnatal donors, we created larger temporal groupings for those 
samples, defining infancy as birth to 1 years old (yo), childhood as 1 yo to 12 yo, adolescence 
as 12 yo to 20 yo, and adulthood as greater than 20 yo. Figure 3B and Figure S24 for 
schizophrenia-associated genes are boxplots of these TPM values and categories, with the 
smoothed line calculated using loess (y ~ x) across all samples. We additionally sought to 
create an estimator for the degree of prenatal versus postnatal expression for each gene. For 
each gene, we performed a T-test between the TPMs from early to mid-pre-natal samples 
against adolescence and adulthood samples. Genes with negative T-values were expressed 
more prenatally while those with positive T-values were expressed more postnatally. All protein-
coding genes were ranked according to these T-values, which were used in Figure S23 to test 
for pre- and postnatal biases in expression in associated genes. 

Comparisons between schizophrenia and other 
neurodevelopmental disorders 
 We aggregated and annotated de novo mutations from 31,058 DD/ID probands, 6,430 
ASD probands, and 2,179 unaffected sibling (control) probands from two published studies24,47. 
Variant annotation was performed in the same manner as our schizophrenia case-control 
analysis. We identified de novo PTV and MPC > 2 missense mutations in schizophrenia-
associated genes, and displayed them in gene plots in Figure 5C, 5D, and S22. To calculate de 
novo P-values in DD/ID and ASD probands, we applied the same test as for schizophrenia gene 
discovery and calculated P-value as the Poisson probability of observing ≥ N de novo mutations 
in a gene given a baseline gene-specific mutation rate. We calculated de novo gene P-values 
for Class I and Class II variants for comparison between disorders, with a focus on genes 
associated with schizophrenia (Figure 5B, Table S14). To compare the de novo enrichment 
between disorders in pLI genes (Figure S25), we used the Poisson exact test to calculate 
differences in de novo mutation rates between schizophrenia, ASD, and DD/ID probands and 
sibling (control) probands. Counts in PTVs, MPC > 2 missense, other missense, and 
synonymous variants were tested separately. We displayed the one-sided P-values, rate ratio, 
and 95% confidence interval in Figure S25, and reported the precise figures in the main text 
under section “Contribution of ultra-rare PTVs to schizophrenia risk”. 
  

We explored what properties may differ between schizophrenia and DD/ID-associated 
risk genes, and hypothesized that DD/ID genes were under stronger evolutionary constraint with 



 

 

a bias towards prenatal expression when compared to schizophrenia genes. To perform this 
analysis, we annotated each protein-coding gene with observed/expected (o/e) values from 
gnomAD and rank of prenatal expression bias as estimated from Brainspan (described 
earlier)21,55. o/e was calculated as the degree of depletion of PTVs in the gnomAD database, 
and could be seen as a continuous measure of genic constraint. Because it was clear that 
schizophrenia and DD/ID risk genes were constrained, we tested if DD/ID genes were under 
stronger constraint by performing a Wilcoxon Rank Sum test between the o/e values of DD/ID 
risk genes and schizophrenia FDR < 5% genes47. We additionally compared the o/e values of 
ASD and schizophrenia risk genes, and displayed the results in Figure S2224. We then 
attempted to test if schizophrenia, DD/ID, and ASD risk genes displayed pre- or postnatal bias. 
We performed a Wilcoxon rank sum test comparing the prenatal percentiles of each set of risk 
genes against the genome-wide background, and displayed the results in Figure S23. We found 
that schizophrenia risk genes did not display a prenatal bias in expression, while DD/ID genes 
were overwhelmingly prenatal in expression. We additionally plotted the expression trajectories 
of individual schizophrenia risk genes in Figure S24, in which individual genes like SETD1A, 
TRIO, and SP4 exhibit prenatal expression while GRIN2A and GRIA3 show postnatal 
expression. 
 
Figure S21 The gene plot displays the protein-coding variants that contribute to the exome signal in SETD1A. 
Variants discovered in cases are plotted above the gene, and those from controls are plotted below. Each variant is 
colored based on inferred consequence, and the protein domains of the gene are also labelled. 

 
 
 
  



 

 

Figure S22 Constraint score distributions of schizophrenia, ASD, and DD/ID genes. The observed-to-expected 
(o/e) constraint values from the gnomAD database are plotted for associated genes in each trait. Genes with o/e 
closer to 0 are more constrained, while genes with o/e closer to 1 are less constrained. The P-value is calculated 
from comparing the o/e distribution of schizophrenia genes to each of the other disorders using a Wilcoxon rank sum 
test. 

 
 
Figure S23 Temporal expression patterns of schizophrenia, ASD, and DD/ID genes. All genes are ranked 
according to degree of pre- to postnatal expression as calculated from Brainspan data55. Genes ranked closer to the 
0th percentile are maximally prenatally, while genes ranked closer to the 100th percentile are maximally expressed 
postnatally. We plot the temporal expression rank of associated genes in each trait. The P value is calculated from 
comparing the rank of each set of associated genes to the remaining genes in the genome using a Wilcoxon rank 
sum test. 

 
 
  



 

 

Figure S24 Temporal expression of significant genes in the human brain. We show expression in four prenatal and 
four postnatal periods derived from whole-brain tissue in BrainSpan55. The expression values plotted are in transcript-
per-million (TPM). 

 
 
  



 

 

Figure S25 De novo mutations in constrained genes in each neurodevelopmental disorder. The rate of de novo 
mutations in DD/ID, ASD, and SCZ are compared to control probands to estimate the number of extra de novo 
mutations in affected individuals compared to controls. The analysis was restricted to constrained genes with pLI > 
0.9. A Poisson rate test was used to calculate the rate difference and P-value. We display the P value for PTVs. Bars 
represent the 95% CIs of the point estimates.  

 

Descriptions of Supplementary Tables 
Table S1 to S3 are embedded in the Supplementary Materials. 
 
Table S4, S6, S7, S8, S9, S11 Enrichment results for different gene sets. S4: constrained genes (pLI > 0.9); 
S6: Public pathway databases; S7: SynGO; Table S8: all GTEx tissues; Table S9: GTEx brain tissues; Table S11: 
Disease-associated genes from GWAS, DD/ID, and ASD.  
Name: gene set of interest. Consequence: variant annotation used in analysis; N genes: size of gene set; Beta,  
standard error: inverse-weighted meta-analyzed beta and standard error from logistic regressions; odds ratio: 
calculated from the meta-analyzed beta and standard error; Z: meta-analyzed Z-score; P-value: gene set P-value 
 
Table S5 Gene burden results from the main analysis, including complete case-control and de novo counts of 
protein-coding genes. PTV: protein-truncating variant, mis3: missense variants with MPC > 3, mis2: missense 
variants with MPC 2 - 3; P ca/co (Class 1): case-control P value of Class I variants; P ca/co (Class 2): case-control P 
value of Class II variants; P ca/co (comb): Meta-analyzed Class I and II case-control P values; P de novo: minimum 
de novo P value from the Poisson rate test of Class I or Class I and II variants; P meta: studywide P value; Q value: 
adjusted P value after FDR adjustment; OR: odds ratio; Class I: PTV and missense variants (MPC > 3); Class II: 
missense variants (MPC 2 - 3). 
 
Table S10 Cell type enrichment of schizophrenia FDR < 5% in mouse single cell atlas. Cell cluster definitions 
acquired from Zeisel et al54. Class: major cell types in nervous system, mainly neurons and non-neurons; 
TaxonomyRank2: describes neuron and non-neuron cell types and location in CNS and PNS; ClusterName: 
Encoding of the specific cell type (unique identifier); CellSubclass: more resolved subdivision of cell types that include 
excitatory and inhibitory labels; Description: full description of cell type; p_value: Enrichment from Wilcoxon rank sum 
test of enrichment Z-scores between schizophrenia FDR < 5% genes and the remaining genes in the genome. 
 



 

 

Table S11 List of associated genes from DD/ID and ASD exome sequencing studies, and schizophrenia 
GWAS24,45,47. Category: source of gene sets; Name: gene set label; Gene ID: Ensembl gene ID; Gene name: HGNC 
ID; pLI: probability of loss-of-function intolerant from gnomAD; o/e: observed-to-expected ratio from gnomAD21. 
 
Table S13 Shared and distinct genetic signals between schizophrenia, DD/ID, and ASD. We showed the burden 
results from ASD and DD/ID for the schizophrenia FDR < 5% genes as presented by the corresponding sequencing 
studies24,47. Yellow: indicates signal in DD/ID or ASD. Orange: indicates the possibility of an allelic series. gene_id, 
gene_name, gene_description, and p_studywide (SCZ): columns as defined in Table S5. Significant (DD/ID), p_meta 
(DD/ID): study-wide significance and P-value as presented in the DD/ID study. p_cluster: test of significant allelic 
clustering as presented in the DD/ID study; dn_{ptv, mis3, mis2}, case_ptv, ctrl_ptv: de novo and case-control counts 
as described in the DD/ID and ASD studies; p_dn_ptv (DD/ID), p_dn_mis (DD/ID): P-values re-calculated from 
Poisson rate test as described in the Supplementary Text. 
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Bruce M. Cohen, Mei-Hua Hall, Steven A. McCarroll, Dost Ongur 

Pritzker Neuropsychiatric Disorders Research Consortium 
(Pritzker NDRC) 
Huda Akil, Jack D. Barchas, William E. Bunney, William F. Byerley, Lynn DeLisi, Francis S. 
Lee, Richard M. Myers, Brandi Rollins, Alan Schatzberg, Marquis P. Vawter, Stanley J. Watson 

Swedish schizophrenia study 
Christina M. Hultman, Jordan W. Smoller, Patrick F. Sullivan 

Taiwanese trios study 
Wei J. Chen, Stephen V. Faraone, Stephen J. Glatt, Hai-Gwo Hwu, Ming T. Tsuang 



 

 

UK and Ireland schizophrenia collections 
Mariam Al Eissa, Nicholas Bass, Douglas H Blackwood, Gerome Breen, Aiden P. Corvin, 
Nicholas Craddock, Charles Curtis, David Curtis, Alessia Fiorentino, George Kirov, Andrew 
McQuillin, Derek W. Morris, Niamh L. O'Brien, Michael C. O'Donovan, Willem H. Ouwehand, 
Michael J. Owen, Aarno Palotie, Digby Quested, Sally I. Sharp, David St. Clair, James T. 
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Whole Genome Sequencing in Psychiatric Disorders (WGSPD) 
consortium and the Genomic Psychiatry Cohort (GPC)  
Tim B. Bigdeli, Michael Boehnke, Evelyn J. Bromet, Peter F. Buckley, Michael A. Escamilla, 
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