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S1 Supplementary Text: NaƟonal mobility indicators during the pandemic

S1.1 Age-specific U.S. foot traffic

To characterise changes in human contact paƩerns during the pandemic, Foursquare Labs Inc. provided longi-

tudinal U.S. foot traffic data across the 50 U.S. states, the District of Columbia, and New York City [1]. The data

are based on Foursquare’s US first-party panel that includes millions of opt-in, always-on acƟve users. Visits are

derived via Foursquare’s core locaƟon technology, Pilgrim [2], which leverages a variety of mobile device signals to

pinpoint the Ɵme, duraƟon, and locaƟon of panelists’ visits to locaƟons such as shops, malls, restaurants, concert

venues, theaters, parks, beaches, or universiƟes. From operated and partner apps, Foursquare Labs Inc. collect

a variety of device signals against opted-in users. These include intermiƩent device GPS coordinate pings, WiFi

signals, cell signal strength, device model, and operaƟng system version. AddiƟonally, a smaller set of labeled ex-

plicit check-ins are captured from a porƟon of the user panel. Check-ins are explicit confirmaƟons that a user was

at a given venue at a given point of Ɵme. One example source of this is Foursquare’s Swarm app, where users can

“check in” to venues to keep a log of where their mobility history. These check-ins then serve as training labels for

a non-linear model that is used to predict visits among users with unlabeled visits in terms of probabiliƟes as to

which venue users ulƟmately visited. For research and insights use cases, the probabiliƟes are processed further,

projected and aggregated by state / metropolitan area, day, and age cohort. This projecƟon accounts for changes

in the number of individuals in the panel and the representaƟveness of panelists according to their home state or

metropolitan area, age band, and gender relaƟve to latest US Census data.

Daily projected visit volumes were available at state / metropolitan area-level from February 1, 2020 to August

21, 2020 for individuals for 6 age groups

ã ∈ Ã =
{
[18− 24], [25− 34], [35− 44], [45− 54], [55− 64], [65+]

}
. (S1)

Daily projected visit volumes were standardised to projected per capita visits Vm,t,ã of individuals in state /

metropolitan area m and age band ã on day t by dividing the visit volumes with the number of individuals in

state / metropolitan area m and age band ã. Per capita visits appeared low for the first two days of the Ɵme

series, and were excluded. Data updates were obtained fromMay 26 onwards. Per capita visits appeared low for

May 25, and were replaced with the values from May 24.

Figure S11 illustrates the pre-processed Ɵme series of projected per capita visits Vm,t,ã. Individuals in New York

City, New York, and Hawai were projected to have considerably more per capita visits than other states and

metropolitan areas. Across states and metropolitan areas, projected per capita visits were highest for individ-
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uals aged 35− 44 years, both before and aŌer stay at home orders were issued. Individuals aged 65 or older had

lowest projected per capita visits across all states and metropolitan areas.

S1.2 Age-specific U.S. mobility trends

Age-specific mobility trends were derived from the U.S. foot traffic data described in SecƟon S1.1. Our aim was to

quanƟfy changes in U.S. foot traffic during the pandemic relaƟve to a baseline period for individuals in the 5-year

age bands (S10) in each of the U.S. states, the District of Columbia, and New York City. The baseline period was

defined from February 3 to February 9, 2020, which corresponded to the first week of the Ɵme series of projected

per capita visits. We first calculated average projected per capita visits during the baseline week,

V base
m,ã =

∑
t∈{Feb 3−Feb 9}

Vm,t,ã (S2)

and then derived the mobility trends

Xm,t,ã = Vm,t,ã/V
base
m,ã (S3)

for each state / metropolitan aream and the age bands ã available through the U.S. foot traffic data.

S1.3 QuanƟtaƟve Analysis

To characterise different effects during the iniƟal phase of the pandemic, the Ɵmewhen stay at home orders were

introduced, and later Ɵme periods, we derived two parƟcular Ɵme points for each state or metropolitan area. The

first Ɵme point characterises the start of substanƟal declines inmobility across all age groups, and the second Ɵme

point characterises the Ɵme aŌer which mobility trends begin to rebound. To determine the two Ɵme points we

calculated the 15-days central moving average of projected per capita visits in each locaƟon (state or metropolitan

area)m,

Xm-avg
m,t =

1

30 + 1

1

Ã

15∑
s=−15

∑
ã

Xm,t+s,ã, (S4)

where Ã is the number of age groups in the mobility data specified in (S1), such that Ã = 6. The first Ɵme point,

which we refer to as the dip date, was determined as the first day when the 15-days moving-average had fallen

by over 10% compared to the one two weeks prior,

tdipm = min
{
t : Xm-avg

m,t /Xm-avg
m,t−14 < 0.9

}
. (S5)
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Figure S11: Projected per person foot traffic per day for the 50 US states, District of Columbia and New York

City. Data were obtained using Foursquare’s locaƟon technology Pilgrim that pinpoints the Ɵme, duraƟon, and

locaƟon of panelist’s visits.
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The second Ɵme point, which we refer to as the rebound date, was determined as the day with the smallest

15-days moving-average,

treboundm = argmint>tdipm
Xm-avg

m,t , (S6)

where tdipm < treboundm ,∀m. Using different Ɵme intervals in the central moving average calculaƟons did not alter

the value of change points substanƟally (not shown). Figure S12 shows the mobility trends (S3) for every U.S.

state, the District of Columbia, and New York City, along with the dip and rebound dates.

We then assessed differences in the age-specific mobility trends around the rebound date when compared to the

baseline week in early February, and similarly in the last observaƟon week when compared to the baseline week.

To do this, age-specific mobility trends were selected from the calendar week that included the rebound date.

Then, Gamma regression models with log link, and locaƟon and age category interacƟon terms were fiƩed to the

selected daily mobility trends. NegaƟve regression coefficients with a two-sided p-value below 0.05 were inter-

preted as age groups showing staƟsƟcally significantly lower mobility compared to the baseline week. Similarly,

posiƟve regression coefficients with a two-sided p-value below 0.05 were interpreted as age groups showing sta-

ƟsƟcally significantly higher mobility compared to the baseline week, and regression coefficients with a two-sided

p-value above 0.05 were interpreted as age groups showing mobility trends that were not significantly different

compared to the baseline week. Figure S13 (leŌ) summarises the results. In the rebound week, mobility was

significantly lower when compared to the baseline week across all age groups and all locaƟons.

We repeated the analysis for the last observed calendarweek (Aug 10-Aug 16). In the lastweek, therewas substan-

Ɵal variaƟon inmobility trendswhen compared to baseline. Among individuals aged 18-24, mobility had remained

significantly lower when compared to baseline in 42 (80.8%) states or metropolitan areas, was not significantly

different when compared to baseline in 6 (11.5%) states or metropolitan areas, and significantly above baseline

in 4 (7.7%) states or metropolitan areas. Among individuals aged 25-34, mobility had remained significantly lower

when compared to baseline in 29 (55.8%) states or metropolitan areas, was not significantly different when com-

pared to baseline in 17 (32.7%) states or metropolitan areas, and significantly above baseline in 6 (11.5%) states

or metropolitan areas. Among individuals aged 35-44, mobility had remained significantly lower when compared

to baseline in 25 (48.1%) states or metropolitan areas, was not significantly different when compared to baseline

in 20 (38.5%) states or metropolitan areas, and significantly above baseline in 7 (13.5%) states or metropolitan

areas. Among individuals aged 44-54, mobility had remained significantly lower when compared to baseline in

22 (42.3%) states or metropolitan areas, was not significantly different when compared to baseline in 23 (44.2%)

states ormetropolitan areas, and significantly above baseline in 7 (13.5%) states ormetropolitan areas. Among in-

dividuals aged 55-64, mobility had remained significantly lower when compared to baseline in 23 (44.2%) states or

metropolitan areas, was not significantly different when compared to baseline in 21 (40.4%) states or metropoli-
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Figure S12: Mobility trends per person per day for the 50 US states, District of Columbia and New York City

(part 1). Mobility trends quanƟfy change in projected visits relaƟve to the baseline week February 3 to February

9, 2020. The two dashed lines indicate the dip and rebound Ɵme, defined respecƟvely in (S5) and (S6).
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Figure S12: Mobility trends per person per day for the 50 US states, District of Columbia and New York City

(part 2). Mobility trends quanƟfy change in projected visits relaƟve to the baseline week February 3 to February

9, 2020. The two dashed lines indicate the dip and rebound Ɵme, defined respecƟvely in (S5) and (S6).

tan areas, and significantly above baseline in 8 (15.4%) states ormetropolitan areas. Among individuals aged 65+,

mobility had remained significantly lower when compared to baseline in 29 (55.8%) states or metropolitan areas,
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was not significantly different when compared to baseline in 14 (26.9%) states or metropolitan areas, and signif-

icantly above baseline in 9 (17.3%) states or metropolitan areas. This analysis suggests that overall, individuals

aged 18-24 conƟnue to limit their mobility substanƟally when compared to early February. For individuals aged

25 and above, mobility trends are heterogeneous across the United States, with mobility levels remaining below

those seen in early February in approximately half of all states or metropolitan areas.

To obtain further insights into age-specific mobility trends between age groups, we repeated the regression analy-

sis using as predictors the contrasts between all age groups and the 35-44 age group. Figure S13 (right) summarises

the results. In the rebound week, individuals aged 18-24 had significantly lower mobility trends when compared

to individuals aged 35-44 in 49 (94.2%) states or metropolitan areas, similar mobility trends in 2 (3.8%) states or

metropolitan areas, and higher mobility trends in 1 (1.9%) states or metropolitan areas. Individuals aged 25-34,

45-54, 55-64 tended to have similar mobility trends when compared to individuals aged 35-44. Individuals aged

65+ tended to have overall significantly lower mobility trends when compared to individuals aged 35-44. Results

for the last observed calendar week (Aug 10-Aug 16) are summarised in the last column of Figure S13. In the last

week, individuals aged 18-24 had significantly lower mobility trends when compared to individuals aged 35-44

in 20 (38.5%) states, similar mobility trends in 31 (59.6%) states, and higher mobility trends in 1 (1.9%) trends.

Individuals aged 25-34, 45-54, 55-64, 65+ tended to have similar mobility trends when compared to individuals

aged 35-44. The Foursquare data suggest that

• individuals aged 18-24 reduced their mobility more strongly than individuals aged 35-44 in the iniƟal phase

of the pandemic, and conƟnue to be significantly less mobile than individuals aged 35-44 as of the last

observaƟon week;

• individuals aged 18-34 have lower or similar, but not significantly higher mobility when compared to indi-

viduals aged 35-44 as of the last observaƟon week;

• individuals aged 65+ showed different behaviour. In the iniƟal phase of the pandemic individuals aged 65+

appear to have reduced their mobility significantly more than individuals aged 35-44, however by the last

observaƟon week, individuals aged 65+ appear to be as mobile as individuals aged 35-44.

S1.4 Comparison to an independent U.S. mobility trend data set

To substanƟate the trends observed in the naƟonal Foursquare data set, we evaluated an independent data set

of age-straƟfied mobility indicators that was provided by Emodo. The Emodo data set quanƟfies the proporƟon
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Figure S13: StaƟsƟcal analysis of mobility trends. (LeŌ) Mobility trends during the calendar week that includes

the rebound date were categorised as staƟsƟcally significantly lower when compared to the baseline week, not

significantly different, and staƟsƟcally higher. Analysis was repeated for mobility trends during the last complete

calendar week. (Right) Mobility trends during the calendar week that includes the rebound date were categorised

relaƟve to trends among individuals aged 35 − 44 in the same week. Analysis was repeated for mobility trends

during the last complete calendar week.

of individuals with at least one observed ping outside the user’s home locaƟon, out of a panel of individuals

whose GPS enabled devices emiƩed at least one ping on the corresponding day. The observed, age-specific, daily

mobility indicators within the panel were projected to locaƟon-level mobility indicators. The projecƟon accounts

for changes in the number of individuals in the panel, and the representaƟveness of panel members in their home

area, age band, and gender relaƟve to the latest U.S. Census.

Daily projected mobility indicators V̆m,t,ă were available at state / metropolitan area-level m from Feb 01 to Jul

26 for individuals between the age groups

ă ∈ Ă =
{
[18− 24], [25− 34], [35− 44], [45− 54], [55+]

}
. (S7)
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To compare the data against the age-specific Foursquare mobility trends (S3), we derived mobility trends similarly

as for the Foursquare data. We first calculated average mobility trends during the baseline period,

V̆ base
m,ă =

∑
t∈{Feb 19−Mar 03}

V̆m,t,ă (S8)

and then derived the mobility trends

X̆m,t,ă = V̆m,t,ă/V̆
base
m,ă (S9)

for each locaƟon (states or metropolitan area)m and the age bands ă.

IniƟal analysis indicated that the mobility trends (S9) were noisy for some locaƟons. For this reason, analysis was

limited to locaƟon with an average of 20, 000 disƟnct panelists per day per age band, and the baseline period in

(S8) was defined over 14 days. In total, data from 11 locaƟons were used. Figure S14 compares the age-specific

mobility trends derived from the Foursquare data to those derived from the Emodo data set. Overall, the trends

observed in both data sets were very similar.

The primary aim of this analysis was to assess whether the Emodo data support the above observaƟon that young

individuals aged 18−24 and 25−34 conƟnue to havemobility trends significantly below or similar to the baseline

period, andmobility trends that are not significantly higher than those seen for older individuals. We repeated the

analyses presented in SecƟon S1.2, with the last observaƟonweek set to the last completeweek of observaƟons in

both data sets (July 20-July 26). Figure S15 summarises the results. The Emodo data substanƟate that individuals

aged 18-24 conƟnue to have mobility trends below those seen in the baseline period, and that individuals aged

25 − 34 have mobility levels similar to those seen at baseline, and not higher than seen at baseline. We further

find the Emodo data support the conclusion that individuals aged 18-24 and 25−34 have lower or similar mobility

levels than individuals aged 34-45, and not higher mobility levels than individuals aged 34-45.
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Figure S14: Comparison of mobility trends derived with Foursquare’s locaƟon technology and Emodo’s mobility

data. The comparison was restricted to idenƟcal age bands in the two data sets, a common range of observaƟon

days, and states and metropolitan areas with an average of at least 20, 000 panelists per day.
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Figure S15: StaƟsƟcal analysis of mobility trends in the Foursquare and Emodo data sets. (LeŌ) Considering

both data sets, mobility trends during the calendar week that includes the rebound date were categorised as

staƟsƟcally significantly lower when compared to the baseline week, not significantly different, and staƟsƟcally

higher. Analysiswas repeated formobility trends during the last complete calendarweek. (Right) Considering both

data sets, mobility trends during the calendar week that includes the rebound date were categorised relaƟve to

trends among individuals aged 35 − 44 in the same week. Analysis was repeated for mobility trends during the

last complete calendar week.

S2 Supplementary Text: Age-specific COVID-19 mortality data

Daily COVID-19 death counts from February 01, 2020 unƟl September 02, 2020 regardless of age were obtained

from John Hopkins University (JHU) for all U.S. states and the District of Columbia [3], except New York State. For

New York State, daily COVID-19 death counts from February 01, 2020 unƟl September 02, 2020 were obtained

from the New York Times’ (NYT) data [4]. For New York City, daily COVID-19 deaths counts were obtained from

the GitHub Repository [5]. The overall death counts were used for staƟsƟcal inference prior to when age-specific

death counts were reported for each locaƟon (state or metropolitan areas).

Age-specific COVID-19 cumulaƟve death counts were retrieved for 40 U.S. states, the District of Columbia and

New York City from city or state Department of Health (DoH) websites, data repositories or via data requests to

DoH. Table S8 lists our data sources for each locaƟon, the date since when age-specific mortality data used in this

study was recorded, and the frequency of data updates.

DOI: https://doi.org/10.25561/82551 Page 14

https://doi.org/10.25561/82551


17 September 2020 Imperial College COVID-19 Response Team

The recorded death counts were processed to create a Ɵme series of daily deaths for every locaƟon. Some dates

hadmissing data, typically either because no updates were reported, or because reporters changed the age bands

inwhich themortality datawere reported. Missing daily death countswere imputed, assuming a constant increase

in daily deaths between two days with data. Some updates displayed a decreasing cumulaƟve death from one

day. When this was observed, the daily death count was set to zero and the previous daily death count was

reduced by the count difference. Finally, certain age bands declared by the Department of Health could not be

directly associated with the age bands used in the analysis, defined in (S10). In this case, the boundaries of these

problemaƟc age bands were modified to reflect the closest age band from the analysis. Figure S16 illustrates the

age-specific COVID-19 mortality data that were retrieved. To assess the completeness of the age-specific death

data, we compared the ƟmeevoluƟon of the sumof the age-specific deaths thatwe retrieved to the ƟmeevoluƟon

of the overall number of COVID-19 deaths reported by JHU [3] and the New York City Github Repository [5].

Figure S17 confirms that the sum of the age-specific data that we retrieved closely matched the overall death

data.
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LocaƟon Date record start Frequency of updates Source

Alabama May 03, 2020 Daily [6]
Alaska June 09, 2020 Daily [7]
Arizona May 13, 2020 Daily [8]
Arkansas - - -
California May 13, 2020 Daily [9]
Colorado March 23, 2020 Daily [10]
ConnecƟcut April 05, 2020 Daily [11]
Delaware May 12, 2020 Daily [12]
District of Columbia April 13, 2020 Daily [13]
Florida March 27, 2020 Daily [14]
Georgia May 06, 2020 Daily [15]
Hawaii - - -
Idaho May 13, 2020 Daily [16]
Illinois May 14, 2020 Daily [17]
Indiana May 13, 2020 Daily [18]
Iowa May 13, 2020 Daily [19]
Kansas May 13, 2020 Mon, Wed and Fri. [20]
Kentucky May 13, 2020 Daily [21]
Louisiana May 12, 2020 Daily except Sat. [22]
Maine March 12, 2020 Daily [23]
Maryland May 14, 2020 Daily [24]
MassachuseƩs April 20, 2020 Daily [25]
Michigan March 21, 2020 Daily [26], [27]
Minnesota - - -
Mississippi April 27, 2020 Daily [28]
Missouri May 13, 2020 Daily [29]
Montana - - -
Nebraska - - -
Nevada June 07, 2020 Daily [30]
New Hampshire June 07, 2020 Daily [31]
New Jersey May 25, 2020 Daily [32]
New Mexico March 25, 2020 Daily [33]
New York - - -
New York City July 01, 2020 Daily [34], [5]
North Carolina May 20, 2020 Daily [35]
North Dakota May 14, 2020 Daily [36]
Ohio - - -
Oklahoma May 13, 2020 Daily [37]
Oregon June 05, 2020 Mon-Fri., someƟmes Sat. [38]
Pennsylvania June 07, 2020 Daily [39]
Rhode Island June 01, 2020 Weekly [40]
South Carolina May 14, 2020 Tue and Fri. [41]
South Dakota - - -
Tennessee April 09, 2020 Daily [42]
Texas July 28, 2020 Daily [43]
Utah June 17, 2020 Daily [44]
Vermont June 16, 2020 Daily [45]
Virginia April 21, 2020 Daily [46]
Washington June 08, 2020 Daily [47]
West Virginia - - -
Wisconsin March 15, 2020 Daily [48]
Wyoming - - -

Table S8: Age-specific Mortality Data source, date of first availability and update frequency by locaƟon (state

and metropolitan area). The data are available in the GitHub repository [49].
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Figure S16: Age-specific COVID-19 mortality data in the United States (part 1). COVID-19 related deaths were

recorded as reported by city or state DoH. Shown is the percent contribuƟon of age groups to cumulated deaths

(colours) from the first day on which the death by age was recorded.. The start of the x-axis is the same in every

figures and corresponds to the day with the first observaƟon of death by age across all locaƟons (states and

metropolitan areas).
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Figure S16: Age-specific COVID-19 mortality data in the United States (part 2). COVID-19 related deaths were

recorded as reported by city or state DoH. Shown is the percent contribuƟon of age groups to cumulated deaths

(colours) from the first day on which the death by age was recorded.. The start of the x-axis is the same in every

figures and corresponds to the day with the first observaƟon of death by age across all locaƟons (states and

metropolitan areas).
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Figure S16: Age-specific COVID-19 mortality data in the United States (part 3). COVID-19 related deaths were

recorded as reported by city or state DoH. Shown is the percent contribuƟon of age groups to cumulated deaths

(colours) from the first day on which the death by age was recorded. The start of the x-axis is the same in every

figures and corresponds to the day with the first observaƟon of death by age across all locaƟons (states and

metropolitan areas).
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Figure S17: Comparison of the Covid-19 overall death between the Department of Health death by age data

with the overall death from JHU [3], and the New York City Github repository (for NYC) [5].
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S3 Supplementary Text: Bayesian semi-mechanisƟc SARS-CoV-2 infecƟon

model

Figure S2, also reproduced here as Figure S18, summarises the main components of the age-specific contact and

infecƟon model. SecƟon S3.1 describes the infecƟon component of the model, and SecƟon S3.2 describes the

contact component of the model. SecƟon S3.3 describes how the model is fiƩed against age-specific mortality

data. SecƟon S3.4 specifies input parameters and prior distribuƟons. Table S9 gives an overview of the model

parameters and associated prior distribuƟons. SecƟon S3.6 describes the generated quanƟƟes of the contact and

infecƟon model. Finally, SecƟon S3.5 provides details on computaƟonal inference.
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Figure S18: Overview of the age-specific contact and infecƟon model.
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IniƟal number of infecƟons yes log cm,t,[20−54] ∼ N (4.5, 0.622), infecƟons seeded among individuals aged 20-54 SecƟon S3.4.1

cm,t,a = 0, for a /∈ [20− 54], with log-normal prior with mean XX
where t = 1, . . . , 6.

InfecƟon parameters yes R0,m ∼ N (3.28, κ) Based on [50] SecƟon S3.4.1
κ ∼ N[0,∞)(0, 0.5)

SuscepƟbility to infecƟon yes log ρS[0−14] ∼ N (−1.07, 0.222) SuscepƟbility was modelled relaƟve to individuals aged 15-64, SecƟon S3.4.1
log ρS[65+] ∼ N (0.38, 0.162) with lower suscepƟbility to infecƟon among individuals aged 0-14,

and higher suscepƟbility among individuals aged 65+.
Based on [51]

DiscreƟzed generaƟon Ɵme distribuƟon no - Based on [52] SecƟon S3.4.1
Baseline age-specific contact matrix no - Predicted based on locaƟons’ age composiƟon and populaƟon density SecƟon S3.4.2
before mobility decreased for weekdays and weekends
Mobility trend predictors no - Decomposed into 3 components to allow for varying effect sizes SecƟon S3.4.2
Regression coefficients to describe yes βeased

m ∼ N (βeased, σ2
eased) LocaƟon-specific random effects to quanƟfy the effect of SecƟon S3.4.2

Ɵme-varying contact intensiƟes βeased ∼ N (0, 1) rapid decreases in mobility between the dip date and the rebound date.
before the rebound date. σeased ∼ Exp(10) Effects are assumed to be constant across age groups.
Regression coefficients to describe yes βupswing

mt = βupswing
m × βupswing

t LocaƟon-specific and Ɵme-varying random effects to quanƟfy the effect of SecƟon S3.4.2
Ɵme-varying contact intensiƟes βupswing

m ∼ N (βupswing, σ2
upswing) increasing mobility levels over the longer period aŌer the rebound date.

aŌer the rebound date. βupswing ∼ N (0, 1) Effects are assumed to be constant across age groups. Time-varying effects
σupswing ∼ Exp(10) are modelled with a bi-weekly AR(1) process that is the same across locaƟons
βupswing
t = ε⌊c(t)/2⌋ and age groups.

ε1 ∼ N[0,∞)(0, 0.025)
εv ∼ N[0,∞)(εv−1, σε) for v > 1
σε ∼ Exp(10)

LocaƟon and age-specific yes πm,a = πa × δm,a The prior distribuƟon on age-specific fatality raƟos πa is based on a SecƟon S3.4.3
infecƟon fatality raƟos logπa ∼ N (µa, σ

2
a) re-analysis of data from several sero-prevalence studies, and similar to

log δm,[20−49] ∼ N(0, σ2
[20−49]) the relaƟonship esƟmated in [53]. µa, σa are specified in Table S13.

log δm,[50−69] ∼ N(0, σ2
[50−69]) LocaƟon-specific random effects account for spaƟal heterogeneity.

log δm,[70+] ∼ Exp(λ[70+])
σ[20−49], σ[50−69] ∼ Exp(10)
λ[70+] ∼ Exp(0.05)

InfecƟon-to-death distribuƟon no - As in [54] SecƟon S3.4.3
Overdispersion parameter yes ϕ ∼ N[0,∞)(0, 5) As in [54] SecƟon S3.4.3

Table S9: List of inputs and model parameters.
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In the model, SARS-CoV-2 spreads via person-to-person contacts. Person-to-person contacts are described at

the populaƟon level with the expected number of contacts made by one individual, referred to as contact in-

tensiƟes. Contact intensiƟes are age-specific. Contact intensiƟes vary across locaƟons (states and metropolitan

areas) according to each locaƟon’ age composiƟon and populaƟon density, and change over Ɵme. Data from

contact surveys before the pandemic are used to define baseline contact intensiƟes. Data from age-specific, cell

phone derived mobility trends are used to esƟmate changes in contact intensiƟes during the epidemic in each

locaƟon, among individuals aged 15+. Contact intensiƟes involving individuals aged 0-14 are defined based on

contact surveys conducted during the pandemic. InfecƟon dynamics in each locaƟon are modelled through age-

specific, discrete-Ɵme renewal equaƟons over Ɵme-varying contact intensiƟes. Natural disease parameters such

as age-specific suscepƟbility to infecƟon, the generaƟon Ɵme distribuƟon, and symptom onset and onset to death

distribuƟons are informed by epidemiologic analyses of contact tracing data. Age-specific infecƟon fatality raƟo

esƟmates are informed by large-scale sero-prevalance surveys. Disease heterogeneity is modelled with random

effects in space and Ɵme on contact intensiƟes and disease parameters. The model returns the expected number

of COVID-19 deaths over Ɵme in each locaƟon, which is fiƩed against age-specific, COVID-19 mortality data. New

data sources presented in this study are indicated in double-framed boxes.

S3.1 InfecƟon model

The Ɵme evoluƟon of SARS-CoV-2 infecƟons is quanƟfied in terms of a discrete-Ɵme age-specific renewal model.

The discrete renewal model arises as the expected value of an age dependent branching process. The model

extends a previous version to age-specific disease dynamics [54]. In the renewal equaƟons, wemodel populaƟons

straƟfied by the 5-year age bandsA, such that

a ∈ A =
{
[0− 4], [5− 9], . . . , [75− 79], [80− 84], [85+]

}
, (S10)

resulƟng in A = 18 populaƟon strata. We denote the number of new infecƟons, c, on day t, in age band a,

and locaƟon m as cm,t,a, with cm,t,a ≥ 0 for all t, m, a. Here infecƟons are taken to be both symptomaƟc and

asymptomaƟc. We introduce a series of daily contact intensity matrices Cmt of dimension 18×18 in each locaƟon

m. The Ɵme changing contact intensiƟes Cm,t were modelled in a regression framework that uses as input pre-

pandemic contact intensiƟes, which will be presented in SecƟon S3.4.2, as well as the age-specific mobility trends

Xm,t,a that are described in Supplementary Text S1. Entry Cm,t,a,a′ quanƟfies the expected number of contacts

that one person in age group a has with persons of another age a′ on day t in locaƟon m, which we refer to as

contact intensity. We further consider the probability ρa′ that a contactwith an infecƟous person leads to infecƟon

of one person in a′. We interpret ρa′ as a natural disease parameter that is region and Ɵme independent. We
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model ρa′ as the product of a constant baseline parameter ρ0, and relaƟve suscepƟbility parameters ρSa′ for a′ ∈ A

through

ρa′ = ρ0 × ρSa′ = exp(log ρ0 + log ρSa′). (S11)

To ensure a relaƟve interpretaƟon of the suscepƟbility parameters, we set ρSa′ = 1 for some age bands. Details

are given in Supplement S3.4.1. This allows us to describe the Ɵme-varying reproducƟon number on day t from

one infecƟous person in a in locaƟonm with

Rm,t,a =
∑
a′

sm,t,a′ ρa′ Cm,t,a,a′ , (S12)

where sm,t,a′ is the proporƟon of the populaƟon in locaƟon m and in age band a′ that remains suscepƟble to

SARS-CoV-2 infecƟon. It is given by

sm,t,a′ = 1−
∑t−1

s=1 cm,t,a′

Nm,a′
, (S13)

where Nm,a′ denotes the populaƟon count in age group a′ and locaƟonm. Extending the basic renewal model,

we obtain similarly

cm,t,a′ = sm,t,a′ρa′

∑
a

Cm,t,a,a′

( t−1∑
s=1

cm,s,a g(t− s)

)
(S14)

where g is the discreƟzed generaƟon Ɵme distribuƟon as in [54]. This is because an individual of age a′ in country

m at Ɵme tmakes contacts with individuals of age a at rate Cm,t,a,a′ , and these are successful with probability ρa′

if and only if 1) the individual in a′ is suscepƟble, which is the case with probability sm,t,a′ , and 2) the individual

in a is sƟll infecƟous, which is the case with probability g(t− s).

S3.2 Time-varying contact paƩerns

S3.2.1 Overview.

Several studies have collected data on age-specific contact paƩerns in various seƫngs across the United States

prior to emergence of SARS-CoV-2 [55, 56, 57, 58]. However, liƩle data are available on how contact paƩerns

changed during the pandemic. These consideraƟons prompted us to take a predicƟve approach. First, we used

data from the Polymod study [59] to predict baseline contact matrices during the early part of the pandemic for

each locaƟon, which we denote by Cm. The pre-pandemic contact matrices quanƟfy the expected number of

contacts from one person in age band a with individuals in age band a′ per day in locaƟon m, also known as

contact intensiƟes. PopulaƟons were straƟfied by 5-year age bands a ∈ A defined in (S10). ReflecƟng differences

in contact paƩerns during weekdays and on weekends, disƟnct pre-pandemic contact matrices were generated

DOI: https://doi.org/10.25561/82551 Page 24

https://doi.org/10.25561/82551


17 September 2020 Imperial College COVID-19 Response Team

for weekdays and weekends, Cwdaym and Cwendm . For simplicity we suppress the weekday and weekend notaƟon in

what follows, with all equaƟons being analogous. Details are presented in SecƟon S3.2.2.

Second, we used the age-specific mobility trend data available for individuals aged 18+ to predict Ɵme-varying

contact intensiƟes among individuals aged 15+. Overall, Ɵme changing contact intensiƟes on day t in locaƟonm

were modelled through

Cm,t,a,a′ = ηm,t,a Cm,a,a′ ηm,t,a′ , (S15)

where a ∈ {[15 − 19], [20 − 25], . . . , [85+] } and a′ ∈ {[15 − 19], [20 − 25], . . . , [85+]}. The mulƟpliers ηm,t,a

describe the esƟmated effect of the age-specific mobility trendsXm,t,a on changes in pre-pandemic contact ma-

trices for each locaƟon. Since both the index person and the contacted individuals are changing theirmobility over

Ɵme, the mulƟpliers are applied to the rows and columns of the contact intensity matrix. Details are presented in

SecƟon S3.2.3.

Third, we used data from two contact surveys conducted aŌer school/nursery closures to specify contact intensi-

Ɵes from and to children aged 0-14. Details are presented in SecƟon S3.2.4.

S3.2.2 Baseline contact intensity matrices prior to changes in mobility

Wefirst obtained esƟmates of weekday andweekend contactmatrices for 8 European countries from the Polymod

contact survey [60]. Briefly, survey parƟcipants were recruited in such a way as to be broadly representaƟve of

the whole populaƟon in terms of geographical spread, age, and sex. ParƟcipants were asked to keep a diary of

their contacts. The study included 7,290 parƟcipants recruited between May 12, 2005 and September 05, 2006.

Contact intensiƟes were esƟmated for Belgium, Germany, Finland, Italy, Luxembourg, the Netherlands, Poland,

and the United Kingdom using the approach of [61], using code at the Github repository [62]. We index each

of the European countries with e. The posterior median esƟmates of the number of individuals in age ã′ that

were contacted per day by one individual in age ã were extracted. Using the available methodology, populaƟons

were straƟfied in 1-year age bands. Figure S19 illustrates the esƟmated weekend and weekday contact intensity

matrices for the 8 European countries.

To match the populaƟon straƟficaƟon in the SARS-CoV-2 infecƟon model, the esƟmated contact intensiƟes at

1-year resoluƟon were aggregated to 5-year resoluƟon using

Ce,a,a′ =
∑

ã∈a,ã′∈a′

Ne,ã(∑
ã∈a Ne,ã

) Ce,ã,ã′ , (S16)

whereNe,ã denotes the number of individuals in 1-year age band ã in the corresponding European country e. The
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Figure S19: EsƟmated contact intensiƟes for the 8 Polymod countries by weekday and weekend.
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esƟmated contact intensiƟes Ce,a,a′ were real-valued and posiƟve.

Next, we constructed a predicƟve staƟsƟcal model of contact intensiƟes based on populaƟon demographics in-

cluding the total populaƟon size, the number of individuals in age band a′, the proporƟon of individuals in age

band a′, and populaƟon density. Regression models were fiƩed based on the 8 ∗ 18 ∗ 18 = 2, 592 esƟmates (S16)

from the European-wide Polymod survey, separately for weekdays and weekends. The chosen staƟsƟcal model

was of the form

log Ce,a,a′ ∼ N (µe,a,a′ , σ2) (S17a)

µe,a,a′ = θa,a′ + θ1
Ne,a′

Ne
+ θ2 log

Ne,a′

Ae
, (S17b)

where θa,a′ are pairwise age-specific baseline terms,Ne,a′ is the number of individuals in age band a′ in locaƟon

e, andAe is the land area of locaƟon e in square kilometres. The least squares esƟmates of θ1 and θ2 were posiƟve

and highly significant for both weekday and weekend contact intensiƟes, so that under model (S17) contact inten-

siƟes with individuals of age a′ increase as the proporƟon of the populaƟon of age a′ increases, and as populaƟon

density increases. The fits of model (S17) through the training data are illustrated in Figure S20. The leave-one-

out cross-validaƟon mean absolute error associated with model (S17) was 0.361 and 84.1% of the variance was

explained.

Baseline contact matrices for the 50 U.S states, the District of Columbia and New York City were then predicted

using (S17). Figure S21 shows the predicted baseline weekday contact matrices Cm for all locaƟons. The pre-

dicted contact matrices are consistent with key characterisƟcs of human contact paƩerns, including high number

of contacts between children and teenagers of same age, parent-child interacƟons, broader workforce interac-

Ɵons, and child/parent-grandparent interacƟons. Figure S22 illustrates locaƟon-specific differences in predicted

contact intensiƟes relaƟve to the naƟonal average. In locaƟons with young populaƟons such as Alaska, the Dis-

trict of Columbia, Texas or Utah, lower contact intensiƟes are predicted with individuals in young age groups when

compared to the naƟonal average. Similarly, in locaƟons with older populaƟons such as Maine, higher contact

intensiƟes are predicted with individuals in older age groups when compared to the naƟonal average. Figure S23

illustrates that locaƟons with high populaƟon density such as the District of Columbia and New York City are pre-

dicted to have higher contact intensiƟes compared to the naƟonal average. Figure S24 compares predicted con-

tact intensiƟes on weekdays to those predicted for weekends. Predicted contact intensiƟes were higher between

children and the elderly individuals on weekends compared to weekdays for all locaƟons.
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Figure S20: Predicted contact intensiƟes versus Polymod esƟmates. Median predicƟons and 95% predicƟve

intervals under model (S17) are shown in grey, and Polymod esƟmates are shown in blue.
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Figure S21: Predicted age-specific contact matrices for the 50 US states, District of Columbia and New York City

prior to the pandemic, on weekdays. Shown in colour are the predicted number of contacts made by one index

person of age a with individuals of age a′ per day. LocaƟons ordered by populaƟon density.
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Figure S22: Difference in predicted age-specific contact matrices for the 50 US states, District of Columbia and

New York City prior to the pandemic relaƟve to the naƟonal average, on weekdays. Shown in colour are the log

raƟo of the contact intensiƟes in each locaƟon compared to the contact intensiƟes for the naƟonal populaƟon.

LocaƟons ordered by populaƟon density.
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Figure S23: Predicted number of expected contacts by one index individual of age a per day. LocaƟons ordered

by populaƟon density, naƟonal average shown in black. PredicƟons shown for weekdays.
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Figure S24: Difference in contact intensiƟes at weekends compared to weekdays. LocaƟons ordered by popula-

Ɵon density.

DOI: https://doi.org/10.25561/82551 Page 32

https://doi.org/10.25561/82551


17 September 2020 Imperial College COVID-19 Response Team

S3.2.3 Time-varying contact intensiƟes among individuals aged 15+

The Ɵme changingmulƟpliers ηm,t,a to the rows and columns of the pre-pandemic contactmatriceswere obtained

through a regressionmodel using the age-specific mobility trends S3 as predictors. To age straƟficaƟon (S10) used

in the model, we expanded the original mobility trends through

Xm,t,a =

{
Xm,t,ã if a ∈ ã
Xm,t,[18−24] if a ∈ {[15− 19], [20− 24]}. (S18)

This step assumed that themobility trends among individuals aged 15-18 are represented by the observedmobility

trends among individuals aged 18− 24.

To model different effects around the Ɵme of stay at home orders and later Ɵme periods, the mobility trends S18

were decomposed into three components. The three components are a baseline mobility trend denoted by

Xbase
m,t,a, an easedmobility trendwhichwedenote byXeased

m,t,a, and an upswingmulƟplier thatwedenote byXupswing
m,t,a .

The decomposiƟon saƟsfies the relaƟon

Xm,t,a = Xbase
m,t,a ×Xeased

m,t,a ×Xupswing
m,t,a (S19)

for allm, t, and a ∈ {[15 − 19], [20 − 24], . . . , [85+]}. Specifically, the base mobility trends, the eased mobility

trends and mulƟpliers were defined as

Xbase
m,t,a =


Xm,t,a if t < tdipm ,

1 if t ≥ tdipm ,

(S20a)

Xeased
m,t,a =



1 if t < tdipm ,

Xm,t,a if tdipm ≤ t < treboundm ,

χwday
m,a if t ≥ treboundm and t is a weekday,

χwend
m,a if t ≥ treboundm and t is a weekend,

(S20b)

Xupswing
m,t,a =



1 if t < tdipm ,

1 if tdipm ≤ t < treboundm ,

Xm,t,a/χ
wday
m,a if t ≥ treboundm and t is a weekday,

Xm,t,a/χ
wend
m,a if t ≥ treboundm and t is a weekend,

(S20c)

where χwday
m,a is the average of the mobility trendXm,t,a over the 5weekdays before treboundm , and χwend

m,a is the aver-

age of the mobility trendXm,t,a over the 4 weekend days before treboundm . Figure S25 illustrates the decomposed

mobility trends for four locaƟons.
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Figure S25: DecomposiƟon of mobility trends, shown for 4 US locaƟons. For each locaƟon, the change point in

overall mobility trends was determined using a 10-day moving average. Age-specific mobility trends were then

decomposed into eased mobility trends and mulƟpliers as shown. The verƟcal dash lines indicate the change

points when mobility dipped and began to rebound.

With the decomposed mobility trends, we modelled the mulƟpliers in (S15) that quanƟfy the Ɵme evoluƟon in

contact intensiƟes through

ηm,t,a = exp
(
logXbase

m,t,a + βeased
m logXeased

m,t,a+

βupswing
mt logXupswing

m,t,a

) (S21)

where βeased
m is varying across locaƟons, and βupswing

mt is varying in space and Ɵme. The purpose of the eased

mobility regression coefficient βeased was to capture the effect of permanent reducƟons in contact paƩerns in

the early phase of the pandemic. The purpose of the upswing regression coefficients βupswing
mt was to capture

longer-term effects aŌer the iniƟal reducƟon in contact paƩerns during the early phase of the pandemic. The
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longer-term effects were allowed to differ in Ɵme and across the United States. Within each locaƟon, the effect

of the age-specific mobility trends was assumed to be idenƟcal.

To illustrate the effect of the regression coefficients, consider the case that βeased
m = βupswing

mt = 0. In this case,

ηm,t,a = 1 and the contact intensiƟes on day t are the same as at baseline aŌer the dip date. If instead βeased
m =

βupswing
mt = 1, the contact intensiƟes on day t from index persons scale with the observed mobility trend Xm,t,a.

Finally, if βeased
m = 1 and βupswing

mt = 0, the contact intensiƟes on day t from index persons scale with the derived

eased mobility trendXeased
m,t,a aŌer the dip date.

S3.2.4 Time-varying contact intensiƟes from and to children aged 0-14

To avoid extrapolaƟng themobility trends to children aged 0-14, we used data from two contact surveys conducted

aŌer school/nursery closures in response to acceleraƟng COVID-19 epidemics in the UK and China [63, 51]. Fig-

ure S27 compares the esƟmated contact intensiƟes from one child aged 0-14 using the contact surveys in Wuhan

and Shanghai before and during lockdown. Figure S26 compares the esƟmated contact intensiƟes to individuals

aged 0-14. We plot the point esƟmates from the original report before lockdown to those during lockdown [51]

(top row) and the raƟo of the contact intensiƟes during lockdown versus the corresponding contact intensiƟes

before lockdown (boƩom row). During lockdown, the esƟmated, average number of daily peer-to-peer contacts

from one child aged 0-14 to children in the same age group was 0.03, corresponding to a contact intensity raƟo

of 0.02 across both ciƟes. The total number of contacts from one child aged 0-14 during the outbreak was 2.07,

corresponding to a contact intensity raƟo of 0.14 across both ciƟes. The average number of contacts from one

individual randomly chosen in the populaƟon to individuals in 0− 14 was 0.23 during lockdown, associated with

a contact intensity raƟon of 0.29. The contact survey of Jarvis and colleagues [63] in the UK included individuals

aged 18+, but interviewed individuals were also asked to report contacts to children and teenagers aged 0-17.

During lockdown, the esƟmated, average number of daily peer-to-peer contacts from one individual older than

18 to children aged 0-17 was 0.78, corresponding to a contact intensity raƟo of 0.25.

In the United States, school closures have been ordered at least to one level (elementary school, middle / junior

high school, or high school) in 13 states and theDistrict of Columbia, and to all levels in the remaining 38 states [64].

In addiƟon, 17 states have also ordered the closure of child-care centres, with the opƟon to provide care only for

children of parentsworking in essenƟal areas, and 11 states either limited the number of children that can be cared

for in child-care centres or encouraged families to stay at home with their children [65]. Figure S28 illustrates the

Ɵmelines of school closure dates across the United States. In the model, we accounted for changes in contact

paƩerns as a result of school and/or day care closures as follows. First, we obtained the average daily contact
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intensiƟes involving children aged 0-14 during lockdown in Wuhan and Shanghai, and denote these by

CCOV ID−0−14
a,a′ (S22)

where either a ∈ {[0 − 4], [5 − 9], [10 − 14]} and a′ is one of the 5-year age bands of the infecƟon-and-contact

model, or a is one of the 5-year age bands and a′ ∈ {[0−4], [5−9], [10−14]}. Next, we denoted the Ɵme indices

corresponding to school closures ordered or recommended in locaƟonm by tschool-closem , and set the Ɵme-varying

contact intensiƟes that involve children aged 0-14 as

Cm,t,a,a′ =

{
Cm,a,a′ if t < tschool-closem

CCOV ID−0−14
a,a′ if t ≥ tschool-closem

(S23)

where Cm,a,a′ is the baseline pre-COVID-19 contact matrix described in SecƟon S3.2.2. School re-opening Ɵmes

fell in the forecast period, the subsequent changes on the contact intensiƟes (S23) during this period are described

in SecƟon S3.7.
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Figure S26: EsƟmated changes in contact intensiƟes to children aged 0-14 during lockdown, Shanghai and

Wuhan, China. Data from [51]. (A) Average number of contacts fromone individual in 5-year age bands to children

aged 0-14 before (blue) and during (orange) lockdown. (B) Contact intensity raƟo (grey).
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Figure S27: EsƟmated changes in contact intensiƟes from one child aged 0− 14 during lockdown, Shanghai and

Wuhan, China. Data from [51]. (A) Average number of contacts from one individual in 0 − 14 to individuals in

5-year age bands before (blue) and during (orange) lockdown. (B) Contact intensity raƟo (grey).
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Figure S28: School closure status in the 50 U.S states and the District of Columbia. Data were retrieved from [64]

for all U.S locaƟons and were available unƟl August 31, 2020.
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S3.3 Likelihood

The self-renewal model is fiƩed to overall death counts and/or age-specific death counts for each locaƟon m.

To establish a link between the data and the expected number of cases cm,t,a (S14), we model the probability

Hma(t − s) that a person in age band a dies from SARS-CoV-2 infecƟon before Ɵme t − s aŌer infecƟon at Ɵme

s in locaƟon (state or metropolitan area) m. We decompose the probability into the infecƟon fatality raƟo in

locaƟon m and age band a, πm,a, and the infecƟon-to-death distribuƟon h that describes when a death occurs

condiƟonal on non-survival. We decompose Hma(t − s) in this manner because esƟmates of both terms are

available from the literature [66, 54]. Our model is

Hma(t− s) = πma

∫ t−s

0

h(u)du, (S24)

where t− s is in conƟnuous Ɵme and h integrates to 1. Using (S24), we can express the probability that a person

in locaƟonm and age band a dies on day s aŌer SARS-CoV-2 infecƟon as

hmsa =

∫ s+0.5

s−0.5

πmah(u)du = πma

∫ s+0.5

s−0.5

h(u)du ∀s = 2, 3, . . . , (S25)

and hm1a = πma

∫ 1.5

0
h(u)du for s = 1. Using (S25), the expected number of COVID-19 deaths on day t in age

band a in locaƟonm is

dmta =

t−1∑
s=1

cmsahm (t−s) a, (S26)

where cmsa is the expected number of new cases on day s in age band a in locaƟonm, (S14).

We link the expected number of death under the self-renewal model to the observed number deaths through

an over-dispersed count model. For each locaƟonm, the data consist of daily, overall reported COVID-19 related

deaths regardless of age unƟl day tage-startm . For each locaƟon, Ɵme was re-scaled to 30 days prior to the first day

when the cumulaƟve number of deaths was 10 or larger. We denote the overall number of deaths on day t in

locaƟonm by ymt for t < tage-startm . From day tage-startm onwards, COVID-19 related deaths are reported in locaƟon-

specific age bands b ∈ Bm. We denote the number of deaths on day t in locaƟonm in age band b ∈ Bm by ymtb

for t ≥ tage-startm . To match the locaƟon-specific death data, we aggregate the expected number of deaths under

the self-renewal model to

dmt =
∑
a∈A

dmta ∀t < tage-startm (S27)

dmtb =
∑
a∈b

dmta ∀t ≥ tage-startm ,∀b ∈ Bm. (S28)
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The log likelihood then consists of three parts,

ℓ(y|θ) =
∑
m

[ ∑
tstartm ≤ t<tage-startm

log NegBin
(
ymt

∣∣dmt, ϕ
)
+ (S29a)

∑
t=tage-startm

∑
b∈Bm

log NegBin
( tage-startm∑

s=1

ymsb

∣∣ tage-startm∑
s=1

dmsb, ϕ
)
+ (S29b)

∑
tage-startm < t ≤ tendm

∑
b∈Bm

log NegBin
(
ymtb

∣∣dmtb, ϕ
)]
, (S29c)

where tstartm is the first day onwhich at least 10 cumulated deathswere reported in locaƟonm, and tendm corresponds

to the last day with overall death, or death by age data, see Table S10.

S3.4 Inputs and prior distribuƟons on model parameters

The COVID-19 age-specific transmission model has the following inputs, which we consider fixed, and model pa-

rameters, which we consider unknown and esƟmate (see Table S9). The total number of esƟmated parameters in

the model is 30+NV +7×M , whereM is the number of locaƟons andNV is the number of bi-weekly intervals,

which for the central analysis amounted to 298 esƟmated parameters.

S3.4.1 InfecƟon dynamics

IniƟal number of infecƟons. For each locaƟon, the number of SARS-CoV-2 infecƟons in the first 6 days of the

observaƟon period among individuals aged 20-54 are given the prior distribuƟon

log cm,t,[20−54] ∼ N (4.5, 0.622), t = 1, . . . , 6 (S30)

Recall that the observaƟon period starts 30 days prior to the first day when the cumulaƟve number of deaths

in locaƟon m was 10 or larger. A priori we thus expect 90 infecƟons to have occurred in the first 6 days among

individuals aged 20-54 years. The new infecƟons are then equally distributed across the corresponding age bands,

cm,t,a =

{
cm,t,[20−54]/7 if a ∈ A0

0 otherwise, (S31)

where A0 = {[20 − 24], [25 − 59], [30 − 34], [35 − 39], [40 − 44], [45 − 49], [50 − 54]} and t = 1, . . . , 6. This

prior specificaƟon is similar to the base model [54].
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LocaƟon
Dates with

overall data

Dates with

death by age data
Number of age groups

Alabama March 29, 2020 - May 02, 2020 May 03, 2020 - August 23, 2020 5
Alaska - - -
Arizona March 27, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 5
Arkansas - - -
California March 17, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 4
Colorado March 25, 2020 - March 25, 2020 March 26, 2020 - August 23, 2020 9
ConnecƟcut March 23, 2020 - April 04, 2020 April 05, 2020 - August 23, 2020 9
Delaware March 31, 2020 - May 11, 2020 May 12, 2020 - August 23, 2020 6
District of Columbia April 02, 2020 - April 12, 2020 April 13, 2020 - August 23, 2020 8
Florida March 20, 2020 - March 26, 2020 March 27, 2020 - August 23, 2020 10
Georgia March 19, 2020 - May 05, 2020 May 06, 2020 - August 23, 2020 18
Hawaii - - -
Idaho April 04, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 8
Illinois March 23, 2020 - May 13, 2020 May 14, 2020 - August 23, 2020 8
Indiana March 24, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 8
Iowa April 02, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 5
Kansas - - -
Kentucky March 30, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 9
Louisiana March 19, 2020 - May 11, 2020 May 12, 2020 - August 23, 2020 7
Maine - - -
Maryland March 29, 2020 - May 13, 2020 May 14, 2020 - August 23, 2020 9
MassachuseƩs March 24, 2020 - April 19, 2020 April 20, 2020 - August 23, 2020 8
Michigan March 23, 2020 - March 23, 2020 March 24, 2020 - August 23, 2020 8
Minnesota - - -
Mississippi March 28, 2020 - April 26, 2020 April 27, 2020 - August 23, 2020 8
Missouri March 28, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 8
Montana - - -
Nebraska - - -
Nevada March 26, 2020 - June 06, 2020 June 07, 2020 - August 23, 2020 8
New Hampshire April 08, 2020 - June 06, 2020 June 07, 2020 - August 23, 2020 9
New Jersey March 20, 2020 - May 24, 2020 May 25, 2020 - August 23, 2020 7
New Mexico April 03, 2020 - April 03, 2020 April 04, 2020 - August 23, 2020 8
New York - - -
New York City March 16, 2020 - June 30, 2020 July 01, 2020 - August 23, 2020 5
North Carolina March 31, 2020 - May 19, 2020 May 20, 2020 - August 23, 2020 6
North Dakota - - -
Ohio - - -
Oklahoma March 28, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 6
Oregon March 25, 2020 - June 04, 2020 June 05, 2020 - August 23, 2020 9
Pennsylvania March 25, 2020 - June 06, 2020 June 07, 2020 - August 23, 2020 8
Rhode Island April 01, 2020 - May 31, 2020 June 01, 2020 - August 23, 2020 9
South Carolina March 27, 2020 - May 13, 2020 May 14, 2020 - August 23, 2020 9
South Dakota - - -
Tennessee March 30, 2020 - April 08, 2020 April 09, 2020 - August 23, 2020 9
Texas March 24, 2020 - July 27, 2020 July 28, 2020 - August 23, 2020 11
Utah April 06, 2020 - June 16, 2020 June 17, 2020 - August 23, 2020 6
Vermont - - -
Virginia March 26, 2020 - April 20, 2020 April 21, 2020 - August 23, 2020 9
Washington March 04, 2020 - June 07, 2020 June 08, 2020 - August 23, 2020 5
West Virginia - - -
Wisconsin March 26, 2020 - March 26, 2020 March 27, 2020 - August 23, 2020 9
Wyoming - - -

Table S10: Dates with overall and death by age data included in the likelihood. Our analysis include 37 locaƟons

with death by age.
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InfecƟon parameters. The infecƟon parameters described in (S11) comprise the baseline infecƟon parameter

in locaƟonm, ρ0m (real-valued), as well as relaƟve suscepƟbility (S) parameters ρS (vector-valued of length A).

To place a prior density on ρ0,m, we consider prior esƟmates on the basic reproducƟon number [50], and specify

the following prior distribuƟon on the basic reproducƟon number R0,m in locaƟonm,

R0,m ∼ N (3.28, κ), (S32a)

κ ∼ N[0,∞)(0, 0.5). (S32b)

where N[a,b) denotes a truncated normal distribuƟon between a and b. A common prior standard deviaƟon is

chosen to allow informaƟon to be shared between locaƟons. This specificaƟon follows the base model [54]. To

obtain ρ0,m, we re-scaleR0,m by the average number of contacts of one person in locaƟonm at baseline,

ρ0,m = R0,m/C̄m (S33a)

C̄m =
∑
a

pm,a

∑
a′

Cwdaym,a,a′ , (S33b)

where Cwdaym is the baseline weekday contact matrix defined in S3.4.2 and pm,a is the proporƟon of the populaƟon

of locaƟonm in age band a.

To place prior densiƟes on the relaƟve suscepƟbility parameters, we used available data from contact tracing and

tesƟng in mainland China [51]. Based on the available data, we considered relaƟve suscepƟbility parameters for

the age bands [0− 14], [15− 64] and [65+], and specified the prior densiƟes

log ρS[0−14] ∼ N (−1.0702, 0.21702) (S34a)

log ρS[65+] ∼ N (0.3828, 0.16382), (S34b)

were the hyperparameters were obtained by fiƫng a lognormal distribuƟon to the reported 95% confidence in-

tervals in [51] with the lognorm R package, version 0.1.6 [67].

The log suscepƟbility parameters for age band [15−64]were set to 0, so that ρS is interpreted relaƟve to infecƟon

dynamics from/to individuals in age band [15− 64]. Considering the 18 age bands of the COVID-19 transmission

model, the age-specific relaƟve suscepƟbility parameters were set to

log ρSa =


log ρS[0−14] if a ∈ [0− 14]

log ρS[15−64] if a ∈ [15− 64]

log ρS[65+] if a ∈ [65+].

, (S35)
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DiscreƟsed generaƟon Ɵme distribuƟon. The generaƟon Ɵme distribuƟon (S14) was kept fixed. Using esƟmates

of [52], we specified the conƟnuous-Ɵme version

gCT (s) = Gamma(6.5, 0.62). (S36)

EquaƟon (S36) was then discreƟsed to units of days,

g(s) =

∫ s+0.5

s−0.5

gCT (u) du ∀s = 2, 3, . . . (S37)

and g(1) =
∫ 1.5

0
gCT (u) du for s = 1. This input specificaƟon is the same as in the base model [54].

S3.4.2 Time changing contact paƩerns

Baseline age-specific contact matrices The pre-pandemic contact intensity matrices were constructed using S1

and are illustrated in Figures S21-S24.

Mobility trend predictors. Changes in contact intensiƟes were modelled through a regression on decomposed,

age- and locaƟon-specificmobility trends. Themobility trend data used in this study are described in SecƟon S1.2.

The decomposiƟon into baseline mobility trends Xbase
m,t,a, eased mobility trends Xeased

m,t,a and upswing mulƟpliers

Xupswing
m,t,a on day t in locaƟonm and age band a is defined in (S20). The mobility predictors were kept fixed.

Mobility trend regression coefficients. EquaƟons (S15) and (S21) describe our model of changing contact in-

tensiƟes, which depends on the regression coefficients βeased
m and βupswing

mt . We model the effect of the mobility

trends prior to the rebound Ɵme (S6) through a spaƟal random effect,

βeased
m ∼ N (βeased, σ2

eased)

βeased ∼ N (0, 1)

σeased ∼ ExponenƟal(5).

(S38)

The effect of the mobility trends aŌer the rebound Ɵme (S6) was allowed to vary in space and Ɵme to capture the

observed heterogeneity in the mobility and death data. We modelled βupswing
mt through the factorisaƟon

βupswing
mt = βupswing

m × βupswing
t (S39)
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where the spaƟal component was modelled as a random effect,

βupswing
m ∼ N (βupswing, σ2

upswing)

βupswing ∼ N (0, 1)

σupswing ∼ ExponenƟal(10),

(S40)

and the Ɵme component was modelled as a bi-weekly AR(1) process centered at zero,

βupswing
t = ε⌊c(t)/2⌋,

ε1 ∼ N[0,∞)(0, 0.025),

εv ∼ N[0,∞)(εv−1, σε) for v > 1,

σε ∼ ExponenƟal(10),

(S41)

and c(t) is a funcƟon that maps the Ɵme indices in locaƟonm to calendar weeks.

S3.4.3 Likelihood

LocaƟon and age-specific infecƟon fatality raƟo. The infecƟon fatality raƟo in locaƟon m and age band a is

decomposed into

πm,a = exp(logπa + log δm,a), (S42)

where logπa are age-specific fixed effects, and log δm,a are random effects for each locaƟon on a subset of age

classes. To specify prior distribuƟons on the age-specific fixed effects, we considered data from the meta-analysis

of Levin and colleagues [68], and then adapted the staƟsƟcal analysis to beƩer reflect increasing uncertainty in

infecƟon fatality raƟo esƟmates for young age groups. For the meta-analysis, we included data from Belgium,

Sweden, and Geneva as in the original analysis [68], but excluded Spain due to difficulƟes in retrieving count data

from the original sources cited in [68]. In addiƟon, we included in the meta-analysis data from Iceland, New

Zealand, and Korea, which were previously used for validaƟon purposes [68]. Tables S11 and S12 present the

sero-prevalence studies and comprehensive tracing programs data used in our re-analysis. Our meta-analysis is

based on the actual death counts dIFR
s,a and esƟmated ranges for the number of infected individuals cIFR

s,a reported

across 6 large scale studies s and various age bands, which are indexed in terms of the median age a of reported

age bands as in [68]. We modelled the count data with a Beta-Binomial observaƟon model, which allowed us to

include observaƟons with no reported deaths, and to account for overdispersion in the data. We used a logit link

funcƟon for simplicity; results using a log link funcƟon were very similar. We allowed for non-linear departures

DOI: https://doi.org/10.25561/82551 Page 45

https://doi.org/10.25561/82551


17 September 2020 Imperial College COVID-19 Response Team

from linear, age-specific trends using a zero-mean Gaussian process model. The full model is

dIFRs,a ∼ Beta-Binomial
(
cIFRs,a, p

IFR
s,aΦ, (1− pIFRs,a)Φ

)
logit pIFRs,a = βIFR

0 + βIFR
1 ∗ a+ fa + ν IFR

s,a,

(S43)

with prior densiƟes

βIFR
0 ∼ N (0, 20)

βIFR
1 ∼ N (0, 1)

ν IFR
s,a ∼ N (0, σ2

Meta)

σMeta ∼ Half-Cauchy(0, 1)

f ∼ GP
(
0,K(αGP, ρGP)

)
αGP ∼ N (0, 2)

ρGP ∼ Inverse-Gamma(11, 400)

1/Φ ∼ Half-Cauchy(0, 1),

(S44)

where the Gaussian process covariance funcƟon is specified by the exponenƟal quadraƟc kernelK with marginal

variance parameter αGP and length scale ρGP. We sought to capture long-range non-linear age trends through

the GP, and for this reason specified for the length scale a prior density with 1% and 99% quanƟles of 20 and 84

years. The model was fiƩed with CmdStan release 2.23.0 (22 April 2020), using 3 adapƟve Hamiltonian Monte

Carlo Sampler [69] with 10,000 iteraƟons each, of which the first 5,000 iteraƟons are considered as a burn-in.

The chains mixed and converged, the minimum andmaximum effecƟve sample sizes were respecƟvely 1, 961 and

34, 270. Moreover, the Rhat staƟsƟcs range was 0.9998 and 1.001. Figure S29 shows the posterior predicƟve

distribuƟon of the infecƟon fatality raƟo on the log scale, along with the data used in the meta-analysis. We

esƟmate substanƟal uncertainty in predicted infecƟon fatality raƟos among individuals below age 40, and this

uncertainty allows the model to explore the possibility of large case numbers among individuals below age 40.

We then fiƩed log-normal distribuƟons to the numerical esƟmates of the 95% credible intervals associated with

the posterior predicƟve infecƟon fatality raƟos using the lognorm R package, version 0.1.6 [67], and specified the

prior distribuƟon on the log infecƟon fatality raƟo for each age band used in the model through

logπa ∼ N (µa, σ
2
a), (S45)

where µa and σa for the 18 increasing age bands in this study are reported in Table S13. Figure S29b compares

our prior distribuƟon (S45) to that obtained from the meta-analysis of Levin and colleagues [68].

The prior (S42) further included a locaƟon-specific random effect for adults aged [20 − 49], which we denote

by δm,[20−49], a locaƟon-specific random effect for adults aged [50 − 69], which we denote by δm,[50−69], and a
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locaƟon-specific random effect for individuals aged 70 or older, which we denote by δm,[70+]. The corresponding

prior distribuƟons were

log δm,[20−49] ∼ N(0, σ2
[20−49]), (S46a)

log δm,[50−69] ∼ N(0, σ2
[50−69]), (S46b)

σ[20−49], σ[50−69] ∼ ExponenƟal(10), (S46c)

log δm,[70+] ∼ ExponenƟal(λ[70+]), (S46d)

λ[70+] ∼ ExponenƟal(0.05). (S46e)

The parameter log δm,[70+] was restricted to be posiƟve in order reduce collinearity between model parameters.

LocaƟon Dates Age bands PopulaƟon size

(Sero-)prevalence

esƟmates (in %) (mean and

95% confidence interval)

Deaths Source

Belgium March - April, 2020 / May 9, 2020

0− 24 3, 228, 894 6.00 [4.20, 8.60] 2

[70]

25− 44 2, 956, 684 5.90 [4.20, 8.30] 30
45− 64 3, 080, 528 6.20 [4.70, 8.30] 409
65− 74 1, 147, 009 4.10 [2.30, 7.20] 1, 061
75− 84 690, 685 7.00 [4.20, 11.70] 2, 144
85+ 326, 659 13.20 [8.90, 19.60] 5, 087

England June 20 - July 13, 2020 / July 17, 2020

18− 44 18, 1904, 73 7.13 [6.69, 7.64] 524 [71]†

45− 64 13, 449, 179 6.17 [5.77, 6.67] 4, 657 [72]†

65− 74 4, 552, 283 3.20 [2.80, 3.60] 7, 105 [73]†

75+ 3, 704, 429 3.30 [2.90, 3.80] 36, 341

Geneva May 6, 2020 / June 1, 2020

5− 9 26, 466 4.53 [1.51, 9.07] 0

[74]
10− 19 53, 180 11.47 [7.33, 16.55] 0
20− 49 219, 440 13.12 [9.75, 17.00] 2
50− 64 98, 528 10.45 [7.31, 14.11] 16
65+ 83, 574 6.82 [3.83, 10.53] 268

Spain March 20 - June 22, 2020 / July 15, 2020

0− 9 4, 283, 800 3.73 [2.28, 6.04] 5

[75]

10− 19 4, 954, 600 4.01 [3.09, 5.19] 6
20− 29 4, 883, 200 5.74 [4.66, 6.97] 35
30− 39 5, 990, 500 4.95 [4.11, 5.95] 77
40− 49 7, 794, 500 5.33 [4.59, 6.19] 295
50− 59 7, 057, 300 5.22 [4.49, 6.07] 1, 023
60− 69 5, 401, 600 4.95 [4.12, 5.95] 2, 653
70− 79 3, 921, 800 4.66 [3.68, 5.87] 6, 131
80+ 2, 599, 100 4.84 [3.48, 6.69] 9, 003

Sweden
May 18 - May 24, 2020 /

June 1 - June 7, 2020

0− 19 2, 297, 477 5.30 [3.31, 7.93] 1 [76]†

20− 64 5, 711, 699 7.60 [5.14, 10.81] 604 [77]†

65+ 2, 008, 354 3.89 [2.06, 6.52] 4, 433 [78]†

Table S11: Summary of the sero-prevalence studies used to formulate the infecƟon fatality rate prior. Dates

presented are the seroprevalence study date / deaths data date. †: England and Sweden’s references are, in

order, for the populaƟon size, seroprevalence esƟmates and mortality counts.
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LocaƟon Dates Age bands PopulaƟon size

Prevalence

esƟmates (in %) (mean and

95% confidence interval)

Deaths Source

Iceland Feb 1-Jun 15

0− 29 135, 576 0.41 [0.30, 0.50] 0

[68]

30− 39 46, 871 1.10 [0.80, 1.60] 1
40− 49 42, 966 1.50 [1.10, 2.00] 0
50− 59 42, 111 0.80 [0.50, 1.30] 0
60− 69 37, 536 0.50 [0.30, 1.00] 2
70− 79 23, 415 0.30 [0.20, 1.30] 3
80+ 12, 775 0.20 [0.10, 2.50] 4

Korea Feb 1-May 17

0− 29 15, 623, 365 0.06 [0.03, 0.08] 0

[68]

30− 39 7, 079, 839 0.04 [0.02, 0.07] 2
40− 49 8, 218, 844 0.04 [0.02, 0.06] 3
50− 59 8, 476, 699 0.06 [0.03, 0.08] 15
60− 69 6, 453, 706 0.05 [0.03, 0.08] 41
70− 79 3, 560, 646 0.05 [0.03, 0.07] 84
80+ 1, 856, 084 0.06 [0.03, 0.09] 144

New Zealand Feb 1-Jul 9

0− 29 1, 911, 472 0.06 [0.03, 0.08] 0

[68]

30− 39 619, 066 0.08 [0.04, 0.12] 0
40− 49 591, 874 0.07 [0.04, 0.11] 0
50− 59 628, 691 0.08 [0.04, 0.12] 0
60− 69 522, 312 0.07 [0.04, 0.10] 3
70− 79 361, 832 0.04 [0.02, 0.07] 7
80+ 186, 985 0.04 [0.02, 0.06] 12

Table S12: Summary of the countries with a comprehensive tracing program used to formulate the infecƟon

fatality raƟo prior. Dates presented are the period of cases and deaths observaƟon. In countries with a com-

prehensive tracing program, the number of cases detected is considered representaƟve of the actual number of

cases.
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(a) Comparison to data (b) Comparison to analysis in [68]

Figure S29: Predicted infecƟon fatality raƟos. (a) Comparison of the posterior predicƟve infecƟon fatality raƟos

against the data used to fitmodel (S43). Shown are the posterior predicƟvemedian (line), 95%posterior predicƟve

credible interval, and raƟos of observed deaths over expected number of cases on the log scale (points). (b)

Comparison of the posterior predicƟve infecƟon fatality raƟoswith the predicƟon intervals from themeta-analysis

of Levin and colleagues [68] (provided in their Supplementary Material).

The age-specific random effects log δm,a for each of the 18 age bands in this study were then set to

log δm,a =


log δm,[20−49] if a ∈ [20− 49]
log δm,[50−69] if a ∈ [50− 69]
log δm,[70+] if a ∈ [70+]
0 otherwise.

(S47)

InfecƟon-to-death distribuƟon. The infecƟon-to-death distribuƟon h in (S24) was kept fixed. Following [79,

66], we first specified the infecƟon-to-onset-of-symptoms distribuƟon and the onset-to-death, and modelled the

infecƟon-to-death distribuƟon as the sum of both components through

h(s) = Gamma(s; 5.1, 0.86) + Gamma(s; 17.8, 0.45), (S48)

where s is in conƟnuous Ɵme. This input specificaƟon is the same as in the base model [80].
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[0− 4] [5− 9] [10− 14] [15− 19] [20− 24] [25− 29]
µa −12.4045236 −11.8276362 −11.2128209 −10.5612676 −9.9547808 −9.3553661
σa 1.2848842 1.1614624 1.017873 0.8757987 0.7785512 0.6912288

[30− 34] [35− 39] [40− 44] [45− 49] [50− 54] [55− 59]
µa −8.7522828 −8.15568 −7.5638957 −6.9594171 −6.3526927 −5.7362489
σa 0.6404053 0.6055523 0.582907 0.5704648 0.5636325 0.562268

[60− 64] [65− 69] [70− 74] [75− 79] [80− 84] [85+]
µa −5.1077053 −4.4738832 −3.848234 −3.229631 −2.6304859 −1.3551168
σa 0.5588437 0.5518728 0.5418635 0.5229684 0.4969032 0.3616957

Table S13: Hyperparameters of the prior density on age-specific infecƟon fatality raƟos, equaƟon (S45).

Overdispersion parameter. The prior distribuƟon on the overdispersion parameter ϕ in the NegaƟve Binomial

observaƟon model (S29) was given by the prior density

ϕ ∼ N[0,∞)(0, 5). (S49)

S3.5 ComputaƟonal inference

The Bayesian hierarchical model was fit with CmdStan release 2.23.0 (22 April 2020), using an adapƟve Hamilto-

nian Monte Carlo (HMC) sampler [69]. 8 HMC chains were run in parallel for 2, 000 iteraƟons, of which the first

1, 500 iteraƟons were specified as warm-up. CalculaƟons for each HMC chain were distributed over 1 processor

per U.S locaƟon (state or metropolitan area) with CmdStan’s reduce_sum funcƟonality. Posterior convergence

was assessed using the Rhat staƟsƟcs and by diagnosing divergent transiƟons of the sampler. There are 4,000

iteraƟons aŌer burn-in across 8 chains, and 10 parameters with the lowest effecƟve sample sizes were assessed.

Those effecƟve sample sizes of are from 589 to 781, and Rhats are from 1.0034 to 1.0159. There were 4092 diver-

gent transiƟons, and that the average posterior step size was around 0.004. The pair plot of parameters for New

York City is in Figure S30.
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Figure S30: Pair plots of the joint posterior distribuƟon of the model parameters for New York City.
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S3.6 Generated quanƟƟes

Age straƟficaƟon for reporƟng purposes. In themanuscript results are reported using the following 8 age bands

d ∈ D =
{
[0− 9], [10− 19], [20− 34], [35− 49], [50− 64], [65− 79], [80+]

}
. (S50)

Posterior samples were recorded in the 18 age bands used in the model ([0 − 4], [5 − 9], . . . , [85+]) and then

aggregated to the straƟficaƟonD using

Rm,t,d =
∑
a∈d

c∗m,t,a∑
k∈d c

∗
m,t,k

Rm,t,a,

cm,t,d =
∑
a∈d

cm,t,a,

dm,t,d =
∑
a∈d

dm,t,a,

(S51)

where c∗m,t,a is the number of infecƟous individuals in locaƟonm and Ɵme t that is in age band a defined in (S54),

Rm,t,a is defined in (S12), cm,t,a is defined in (S14) and dm,t,a is defined in (S8).

EsƟmated cumulated COVID-19 aƩack rates by age and over Ɵme. We calculate the percentage of the popula-

Ɵon inm and in age band d that has been infected up to day t through

Am,t,d =

∑t
s=1 cm,s,d

Nm,d
, (S52)

where Nm,d is the number of individuals in locaƟon m and age band d, and cm,s,d is defined in (S51). We also

refer to (S52) as the age-specific cumulaƟve aƩack rate. Similarly, we calculate the percentage of the populaƟon

inm that has been infected up to day t through

Am,t =

∑
d

∑t
s=1 cm,s,d∑
d Nm,d

=
∑
d

Nm,d

Nm
Am,t,d, (S53)

whereNm is the number of individuals in locaƟonm. We also refer to (S53) as the cumulaƟve aƩack rate.

EsƟmated number of infecƟous individuals by age and over Ɵme. The effecƟve number of infecƟous individuals

c∗ in locaƟonm and age band d on day t is calculated by weighing how infecƟous a previously infected individual

is on day t,

c∗m,t,d =

t−1∑
s=1

cm,s,d g(t− s), (S54)
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where g appears in (S14). Similarly, the effecƟve number of infecƟous individuals c∗ in locaƟon m on day t is

calculated by

c∗m,t =
∑
d

t−1∑
s=1

cm,s,d g(t− s) =

t−1∑
s=1

cm,s g(t− s). (S55)

EsƟmated Ɵme-varying reproducƟon number of COVID-19 over Ɵme. The overall Ɵme-varying reproducƟon

number on day t in locaƟonm is given by

Rm,t = cm,t/c
∗
m,t (S56)

where cm,t is the number of new cases on day t in locaƟonm, and c∗m,t is the number of infecƟous individuals on

day t in locaƟonm [81]. EquaƟon (S56) can be re-arranged to

Rm,t =
∑
a

c∗m,t,a/c
∗
m,tRm,t,a, (S57)

whereRm,t,a is defined in (S12).

EsƟmated age-specific SARS-CoV-2 transmission flows. Following on from EquaƟon (S14), the transmission

flows from age group a to age group a′ at Ɵme t in locaƟonm are,

Fm,t,a,a′ = sm,t,a′ ρa′ Cm,t,a,a′

( t−1∑
s=1

cm,s,a g(t− s)

)
, (S58)

where sm,t,a′ is defined in (S13), ρa,a′ is defined in (S11), and Cm,t,a,a′ is defined in (S15). In terms of the age

bands reported in the main text, the transmission flows by aggregated age groups are

Fm,t,d,d′ =
∑

a∈d,a′∈d′

Fm,t,a,a′ . (S59)

EsƟmated contribuƟon of age groups to SARS-CoV-2 transmission. Following on from EquaƟon (S58), the age-

specific contribuƟon of infecƟons from age band a in locaƟonm on day t is

Sm,t,a =

(∑
a′

Fm,t,a,a′

)/(∑
a

∑
a′

Fm,t,a,a′

)
. (S60)

The age-specific contribuƟon of infecƟons are proporƟons, such that
∑

a Sm,t,a = 1 for all a. In terms of the age

bands reported in the main text, the aggregated contribuƟon of infecƟons in age band d in locaƟon m on day t

are equal to

Sm,t,d =

(∑
d′

Fm,t,d,d′

)/(∑
d

∑
d′

Fm,t,d,d′

)
. (S61)
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NaƟonal averages. Several quanƟƟes are reported at the naƟonal level by age,

Rt,d =
∑
m

c∗m,t,d∑
l c

∗
l,t,d

Rm,t,d, (S62)

ct,d =
∑
m

cm,t,d, (S63)

dt,d =
∑
m

dm,t,d, (S64)

where c∗m,t,d is the number of infecƟous individuals at Ɵme t in locaƟonm and age band d, defined in (S54), and

Rm,t,d, cm,t,d and dm,t,a are defined in (S51). Finally, for reporƟng at the naƟonal level regardless of age, we

calculated

Rt =
∑
m

∑
d∈D

c∗m,t,d∑
l

∑
k∈D c∗l,t,k

Rm,t,d, (S65)

ct =
∑
d

ct,d, (S66)

dt =
∑
d

dt,d. (S67)

S3.7 Forecasts

Forecast period. School re-opening scenarios were generated for 90 days, for the Ɵme period August 24, 2020

to November 24, 2020.

Contact and transmission intensiƟes during school re-opening scenarios. In the school re-opening scenarios,

children aged 0-11were modelled to resume their typical contact intensiƟes. As the contact-and-infecƟon model

is specified in terms of the 5-year age bands (S10), the contact intensiƟes for children aged 10-14 were modelled

through a mixture approach,

Cm,t,a,a′ =


Cm,a,a′ if t < tschool-closem

CCOV ID−0−14
a,a′ if t ∈ [tschool-closem , tschool-reopenm − 1]

Cm,a,a′ if t ≥ tschool-reopenm and a < 10 or a′ < 10
2
5Cm,a,a′ + 3

5C
COV ID−0−14
a,a′ if t ≥ tschool-reopenm and a = 10− 14 or a′ = 10− 14

(S68)

where the school re-opening date tschool-reopenm was set to August 24, 2020 in all locaƟons, Cm,a,a′ is the baseline

pre-COVID-19 contact matrix described in SecƟon S3.2.2, and CCOV ID−0−14
a,a′ is the average contact matrix during

lockdown of [51] described in SecƟon S3.2.4, and a or a′ are one of [0− 4], [5− 9], [10− 14].

We further considered that due to other preventaƟve intervenƟons, transmissions rates involving children aged
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0-11 are modulated by a factor βfc-0-11, and we considered school re-opening scenarios using the values

βfc-0-11 = 0.2, 0.33, 0.5, 1.0, (S69)

which were moƟvated by the effect sizes reported in [82]. Due to the mixture approach in (S68), we incorporated

the prevenƟon effect parameter βfc-0-11 on the contact intensiƟes rather than the transmission intensiƟes in the

renewal equaƟon (S14),

Cm,t,a,a′ =



Cm,a,a′ if t < tschool-closem

CCOV ID−0−14
a,a′ if t ∈ [tschool-closem , tschool-reopenm − 1]

βfc-0-11Cm,a,a′ if t ≥ tschool-reopenm and a < 10 or a′ < 10
2
5β

fc-0-11Cm,a,a′ + 3
5C

COV ID−0−14
a,a′ if t ≥ tschool-reopenm and a = 10− 14,

or a′ = 10− 14

(S70)

where a or a′ are one of [0− 4], [5− 9], [10− 14].

Contact intensiƟes among individuals aged 15+ were modelled as before based on the mobility trends in equa-

Ɵons (S15) and (S21) where the required mobility trend predictors were imputed, and for weekdays set to the

average over the last 5 weekdays, and for weekends set to the average over the last 4 weekend days.

Contact and transmission intensiƟes during school re-opening scenarios. In the school closure scenarios, con-

tact intensiƟes remained unchanged, and corresponded to (S70)with tschool-reopenm = ∞. Contact intensiƟes among

individuals aged 15+weremodelled as before based on themobility trends in equaƟons (S15) and (S21)where the

required mobility trend predictors were imputed, and for weekdays set to the average over the last 5 weekdays,

and for weekends set to the average over the last 4 weekend days.

Age straƟficaƟon for school re-opening forecasƟng scenarios. To invesƟgate the impact of re-opening day care,

kindergartens, and elementary schools, we used the age bands

d̃ ∈ D̃ =
{
[0− 11], [12− 19], [20− 34], [35− 49], [50− 64], [65− 79], [80+]

}
. (S71)

and then aggregated to the straƟficaƟon D̃ analogously to (S51). We introduce the superscript x to denote the

various scenarios, e.g. re-opening of kindergartens and elementary schools, or conƟnued closure of kindergartens

and elementary schools. Then, the Ɵme-varying reproducƟon numbers in the forecast period/scenarios were

calculated through

Rx
m,t,d̃

=


pm,[0−4]R

x
m,t,[0−4]+pm,[5−9]R

x
m,t,[5−9]+

2
5pm,[10−14]R

x
m,t,[10−14]

pm,[0−4]+pm,[5−9]+
2
5pm,[10−14]

if d̃ = [0− 11]
3
5pm,[10−14]R

x
m,t,[10−14]+pm,[15−19]R

x
m,t,[15−19]

3
5pm,[10−14]+pm,[15−19]

if d̃ = [12− 19]∑
a∈d̃

pm,a∑
k∈d pm,k

Rx
m,t,a if d̃ > 19,

(S72)
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and the number of daily new cases through

cx
m,t,d̃

=


cxm,t,[0−4] + cxm,t,[5−9] +

2
5c

x
m,t,[10−14] if d̃ = [0− 11]

3
5c

x
m,t,[10−14] + cxm,t,[15−19] if d̃ = [12− 19]∑
a∈d̃ c

x
m,t,a if d̃ > 19,

(S73)

and the number of daily deaths through

dx
m,t,d̃

=


dxm,t,[0−4] + dxm,t,[5−9] +

2
5d

x
m,t,[10−14] if d̃ = [0− 11]

3
5d

x
m,t,[10−14] + dxm,t,[15−19] if d̃ = [12− 19]∑
a∈d̃ d

x
m,t,a if d̃ > 19,

(S74)

and the contribuƟon of age group d̃ to onward spread on day t in locaƟonm and scenario x through

Sx
m,t,d̃

=


Sx
m,t,[0−9] +

2
10S

x
m,t,[10−19] if d̃ = [0− 11]

8
10S

x
m,t,[10−19] if d̃ = [12− 19]

Sx
m,t,d if d̃ > 19.

(S75)

Predicted excess infecƟons and deaths, percent increases in infecƟons and deaths. Based on (S72-S75), the

excess number of cases in the re-opening scenarios versus the conƟnued closure scenario was calculated as

cexcess
m,t,d̃

= creopen
m,t,d̃

− cclose
m,t,d̃

, (S76)

and the percent increase in cases was calculated as

cpc-increase
m,t,d̃

= creopen
m,t,d̃

/cclose
m,t,d̃

− 1. (S77)

Predicted excess deaths and percent increases in deaths were calculated analogously. Predicted percent increase

in the Ɵme varying reproducƟon number were also calculated analogously.
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S4 Supplementary Text: Comparison ofmodel outputs to esƟmated contact

intensiƟes during the pandemic

The SARS-CoV-2 transmission model presented in SecƟon S3.1 makes detailed predicƟons on the Ɵme evoluƟon

of age-specific contact paƩerns during the pandemic. As a form of external model validaƟon, we here compare

the model predicƟons against data from contact survey studies.

In the United States, the Berkeley Interpersonal Contact Study (BICS) was designed tomeasure the effects of social

distancing on contact paƩerns during the pandemic, and began in spring 2020 [83]. Their study included adults

aged 18+ and wave 0 was conducted between March 22 to April 08, 2020. In this wave, approximately half the

study parƟcipants were from five ciƟes (New York, San Francisco Bay Area, Atlanta, Phoenix, Boston) with the rest

from around the rest of the US. In their iniƟal analyses, the study authors found that individuals had a mean of

2.7 conversaƟonal contacts with similar IQR when compared to the study of Jarvis et al. [63] in the UK: 85% of

respondents reported four or fewer contacts. Despite wide confidence intervals, these figures indicate substanƟal

reducƟons in the overall number of contacts in the early phase of the pandemic, and early aŌer lockdown or stay

at home orders were issued.

We compared the esƟmates from the two contact surveys to the average number of contacts at the midpoint

of the wave 0 period of the BICS study, March 28, 2020 (Table S14). To match the study sample of the BICS

study, we report esƟmates for two metropolitan areas included in the model analysis (New York City and District

of Columbia), and an overall esƟmate for the United States obtained by averaging across all states evaluated,

New York City, and the District of Columbia. Overall, the COVID-19 contact and infecƟon model esƟmates similar

strong reducƟons in the number of daily contacts, with a probability of one that overall, the average number of

daily contacts by individuals of all ages was at most four.

Number of daily contacts [95% credible intervals] Posterior probability of at most 4 daily contacts
District of Columbia 2.56 [1.8 - 3.75] 100%
New York City 2.75 [2.13 - 3.59] 100%
United States 2.75 [2.56 - 2.94] 100%

Table S14: EsƟmated number of contacts on March 28, 2020 (midpoint of BICS wave0 study). Posterior median

and 95% credible intervals in brackets. We include a weighted average across the United States and two ciƟes

which were included in the BICS study.

We also compared the age breakdown of daily number of conversaƟonal contacts from the BICS study with our

model esƟmates for New York City, District of Columbia and a naƟonal average. Figure S31 indicates good agree-
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Figure S31: EsƟmated daily number of contacts per age band onMarch 28, 2020 (midpoint of BICSwave0 study).

ment between the esƟmates of the BICS study and model fits.
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S5 Supplementary Text: Comparison of model outputs to seroprevalence

esƟmates

To further assess model fit, we reviewed data from several large-scale COVID-19 seroprevalence surveys in the

United States, and qualitaƟvely compared the sero-prevalence esƟmates from the anƟbody surveys to the esƟ-

mates under the contact and infecƟon model at locaƟon (state or metropolitan area) level.

We included 14 COVID-19 anƟbody surveys from across the United States in this comparison (Table S15). 13

studies were conducted by the U.S. Centers for Disease Control & PrevenƟon (CDC) in 7 locaƟons, ConnecƟcut,

Florida, Louisiana, Missouri, New York City, Utah, and Washington. Two rounds of seroprevalence surveys were

done in each locaƟon, except Louisiana where one seroprevalence survey was performed. The surveys included

individuals who had blood specimens tested for reasons unrelated to COVID-19 [84], and thus the study samples

may not be representaƟve of the underlying populaƟons. For instance, the CDC compared the predicted number

of total infecƟons obtained under the COVID-19 sero-prevalence esƟmates to the number of reported cases, and

found that inmost locaƟons, approximately one in ten caseswere reported. However for the study in ConnecƟcut,

the raƟo was one in six, and for the study in Missouri, the raƟo was one in 24, suggesƟng that the study samples

in these locaƟons may not be representaƟve. The final survey included in the comparison was also from New York

City [85], and included parƟcipants recruited through flyers at the entrances of grocery stores. Individuals who are

less likely to visit grocery stores may have lower infecƟon risk (e.g. because of self-isolaƟon) or higher infecƟon

risk (e.g. quaranƟne aŌer infecƟon), and esƟmates from this study may also be subject to unknown biases.

In all studies, IgM and IgG enzyme-linked immunosorbent assays (ELISA) were used to test for COVID-19 anƟ-

bodies. Common limitaƟons of these tests are that infected individuals with anƟbodies may test negaƟve (false

negaƟves), uninfected individuals without anƟbodies may test posiƟve (false posiƟves), that infected individuals

may not yet have developed anƟbodies (anƟbody eclipse phase), and that infected individuals may have already

lost anƟbodies (sero-reversion). The above studies adjusted sero-prevalence esƟmates for false posiƟve and false

negaƟve rates, however re-analyses of manufacturer sensiƟvity and specificity figures suggest that these num-

bers may have to be considered with cauƟon [53]. To account for the anƟbody eclipse phase, we calculated as

part of the infecƟon model the number of expected infected individuals with anƟbodies. Specifically, COVID-19

symptoms are esƟmated to develop on average 6 days aŌer infecƟon (esƟmated range 2 to 14 days) [87] and

individuals are esƟmated to develop IgG anƟbodies on average 14 days aŌer symptom onset (esƟmated range 7

to 21 days) [88, 89]. Based on these esƟmates, we specified the infecƟon-to-onset-of-symptoms distribuƟon and
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the onset-to-anƟbody distribuƟon as the sum of both components through

k(s) = Gamma(s; 5.1, 0.86) + Normal(s; 14, 3.57) (S78)

where s is in conƟnuous Ɵme. We then express the probability that a person in locaƟonm and age band a develops

anƟbodies on day s aŌer SARS-CoV-2 infecƟon as

ks =

∫ s+0.5

s−0.5

k(u)du =

∫ s+0.5

s−0.5

k(u)du ∀s = 2, 3, . . . , (S79)

and ks =
∫ 1.5

0
k(u)du for s = 1. Using (S79), the expected number of infected individuals that develop COVID-19

anƟbodies on day t in age band a in locaƟonm is

bm,t,a =

t−1∑
s=1

cm,s,a kt−s, (S80)

where cm,s,a is the expected number of new cases on day s in age band a in locaƟon m, (S14). With regards to

sero-reversion, we note that the above studies were completed by early June. Based on the resulƟng short Ɵme

frame since onset of the pandemic, we assumed that infected individuals did not serorevert. We thus calculated

the expected proporƟon of individuals with COVID-19 anƟbodies on day t in locaƟonm as

sm,t =
(∑

a

t∑
s=1

bm,s,a

)
/Nm, (S81)

Study Round Period Number of parƟcipants

ConnecƟcut
1 Apr 26 - May 3 1431
2 May 21 - May 26 1800

Louisiana
1 Apr 1 - Apr 8 1184
2 - -

Minnesota
1 Apr 30 - May 12 860
2 May 25 - Jun 7 1323

Missouri
1 Apr 20 - Apr 26 1882
2 May 25 - May 30 1831

New York City Metro Area
1 Mar 23 - Apr 1 2482
2 Apr 25 - May 6 1116

Philadelphia Metro Area
1 Apr 13 - Apr 25 824
2 May 26 - May 30 1743

San Francisco Bay Area
1 Apr 23 - Apr 27 1224
2 - -

South Florida
1 Apr 6 - Apr 10 1742
2 Apr 20 - Apr 24 1280

Utah
1 Apr 20 - May 3 1132
2 May 25 - Jun 5 1940

Western Washington Region
1 Mar 23 - Apr 1 3264
2 Apr 27 - May 11 1719

Table S15: CharacterisƟcs of large-scale anƟbody studies used for the comparison. All dates are for the year

2020. Data were retrieved from the CDC dashboard [86].
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whereNm is the number of individuals in locaƟonm. The day of comparison was set to the last day of the study

period. For the New York City study [85], the Utah study, and the second round of the Florida study, individuals

up to age 18were excluded from calculaƟon of the sero-prevalence esƟmate (S81), because of small sample sizes

in the surveys.

Figure S32: Comparison between esƟmates of COVID-19 seroprevalence under the contact and infecƟonmodel

with those from large-scale anƟbody studies. Shown are posterior medians and 95% credible intervals for model

output, and esƟmates as reported from the anƟbody studies, for the dates reported by the studies.

Figure S32 compares the expected proporƟon of individuals with COVID-19 anƟbodies (S81) to study esƟmates.
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For ConnecƟcut, themodel esƟmates considerably higher seroprevalence levels than the CDC study. However un-

der the esƟmates of the CDC study, the raƟo of expected to observed cases was unusually low at 6:1, suggesƟng

that seroprevalence was likely underesƟmated in that study by a factor of two. For Florida, survey samples were

collected in South Florida, which experienced higher numbers of reported cases and contributed disproporƟon-

ately towards total deaths within the state. This suggests that survey esƟmates likely overstated seroprevalence

compared to the state as a whole, and the implicaƟons on our comparison are unclear. For the round 1 study

in Missouri, we note the raƟo of expected to observed cases was unusually high at 24:1, suggesƟng that sero-

prevalence was likely overesƟmated in the study by a factor of two. For the New York metropolitan area, the

catchment area increased from round 1 to round 2 to include Long Island, suggesƟng that the survey esƟmates

could understate seroprevalence compared to New York City in early May. For Utah, the round 2 point esƟmate

is significantly lower than that of round 1. For Washington, survey samples were collected in the Western region,

which also experienced higher case and death numbers than the Eastern part ofWashington state, suggesƟng that

survey esƟmates could have overstated state-level seroprevalence. The second New York City study [85] found

considerably higher seroprevalence esƟmates at a Ɵme point before the first CDC study in New York City. Our

model esƟmates appear to bemore in line with the sero-prevalence esƟmates of the two CDC studies in New York

City. Based on these consideraƟons, we focus on a broad, more qualitaƟve comparison between the model and

seroprevalence esƟmates. Using previous version of the contact-and-infecƟon model with infecƟon fatality raƟo

priors based on [66] and on [53], the model esƟmates were consistently 30% to 50% below the survey esƟmates.

This prompted us to revisit previous infecƟon fatality raƟo esƟmates as described in Supplementary Text S3, sug-

gesƟng greater uncertainty in infecƟon fatality raƟo esƟmates among individuals aged 40 and below. In turn, this

uncertainty allowed the model to explore the possibility of more cases among individuals aged 40 and below,

and lead to inferences that appear to be overall more consistent with available sero-prevalence esƟmates. The

corresponding cumulaƟve aƩack rates esƟmates are presented in Table S3.
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S6 Supplementary Text: SensiƟvity analyses

S6.1 AlternaƟve assumpƟons on age-specific infecƟon fatality raƟos

The central analysis is based on the prior density (S45) on infecƟon fatality raƟos (IFR). The contact and infecƟon

model is sensiƟve to the assumed IFR prior, as any model that infers disease dynamics from COVID-19 aƩributable

deaths [54]. In sensiƟvity analyses, we considered an alternaƟve IFR prior density using the predicted mean and

95% predicƟon intervals of age-specific IFRs derived in the meta-analysis of Levin and colleagues [68]. The meta-

analysis esƟmated age-specific IFRs for ages 35 and above, however for the model analysis esƟmates for younger

age groups are required. We thus extrapolated the predicted mean and 95% predicƟon intervals in [68] under

their linearmodel as shown in Figure S33. We refer to the resulƟng IFR prior density as the log IFR prior constructed

from the Levin et al meta-analysis.

Then, we refiƩed the contact-and-infecƟon model using the log IFR prior constructed from the Levin et al meta-

analysis. Figure S35 compares the cumulaƟve aƩack rates esƟmated under the central model to those under the

model with log IFR prior constructed from the Levin et al. meta-analysis. The greater uncertainty in IFR values

for young individuals translates into greater uncertainty on cumulaƟve aƩack rates, with the central model less

certain about how many individuals have been infected to date in several states. In addiƟon, the posterior me-

dian esƟmates of cumulaƟve aƩack rates are higher under the central model, when the IFR prior density allows

exploring the possibility of more infecƟons among young individuals. Figure S36 compares the seroprevalence

esƟmates under both models to the esƟmates of the anƟbody study described in Supplementary Text S5. Sero-

prevalence esƟmates are lower when the model is used in conjuncƟon with the log IFR prior constructed from

the Levin et al. meta-analysis, suggesƟng larger differences relaƟve to the esƟmates of the CDC anƟbody studies

when seroprevalence is low, and smaller differences relaƟve to the esƟmates of the CDC anƟbody studies when

seroprevalence is high. On this basis we chose the infecƟon fatality raƟo prior with larger uncertainty for the

central analysis.

Figure S37 compares esƟmates of age-specific reproducƟon numbers, and the contribuƟon of age groups to on-

ward spread under the central and alternaƟvemodel. Bothmodelsmake similar inferences on age-specific disease

spread, with larger uncertainty esƟmates under the central model.
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Figure S33: Comparison of the IFR prior used in the central analysis to the log IFR prior constructed from the

Levin et al meta-analysis. Mean and 95% uncertainty ranges of the two prior densiƟes are shown as lines and

ribbons, with the IFR prior used in the central analysis (S45) shown in grey, and the log IFR prior constructed from

the Levin et al meta-analysis shown in orange.
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Figure S34: Overall cumulaƟve aƩack rate esƟmates under the central model and under themodel using the log

IFR prior constructed from the Levin et al meta-analysis, as of August 23, 2020. Dots and error bars indicate the

median posterior and the 95% confidence intervals, respecƟvely. Central model in yellow and alternaƟve model

in black.
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Figure S35: Age-specific cumulaƟve aƩack rate esƟmates under the centralmodel andunder themodel using the

log IFR prior constructed from the Levin et al. meta-analysis, as of August 23, 2020. Dots and error bars indicate

the median posterior and the 95% confidence intervals, respecƟvely. Central model in yellow and alternaƟve

model in black.
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Figure S36: Comparison of large-scale seroprevalence studies esƟmates with the expected seroprevalence un-

der the central model and the model using the log IFR prior constructed from the Levin et al. meta-analysis.

Shown are posterior medians and 95% credible intervals for model output, and esƟmates as reported from sero-

prevalence studies, for the dates reported by the studies and assuming a 0-day lag.
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Figure S37: Age-specific weekly reproducƟon numbers and contribuƟon of age groups to onward spread under

the central model and under the model using the log IFR prior constructed from the Levin et al meta-analysis.

(Top) EsƟmated weekly age-specific reproducƟon numbers for the week starƟng on August 17, 2020 under the

central model (yellow) and themodel using the log IFR prior constructed from the Levin et al meta-analysis (black).

Dots and error bars indicate the median posterior and the 95% confidence intervals, respecƟvely. (BoƩom) EsƟ-

mated cumulaƟve contribuƟon of age groups to onward spread as of August 24, 2020.
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S6.2 AlternaƟve assumpƟons on contact intensiƟes from and to children aged 0-14 during

the pandemic

The cell-phone derived populaƟon-level mobility data used in this study were only available for individuals aged

18+. We rely on limited data from two contact surveys performed in the United Kingdom and China [63, 51] as

described in SecƟon S3.2 to characterise contact paƩerns from and to younger individuals during the pandemic.

Specifically, in the central analysis, the 3 ∗ 3 + (18 − 3) ∗ 3 + 3 ∗ (18 − 3) = 99 contact intensiƟes from or to

children aged 0-14 were set to the corresponding, average contact intensiƟes observed during lockdown in the

study of Zhang and colleagues [51], as specified in (S23).

In sensiƟvity analyses we explored the impact of lower or higher contact intensiƟes from or to children aged 0-14

during school closures. We approached this by reformulaƟng (S23) to the following form,

Cm,t,a,a′ =

{
Cm,a,a′ if t < tschool-closem

τCCOV ID−0−14
a,a′ if t ≥ tschool-closem ,

(S82)

where a ∈ {[0− 4], [5− 9], [10− 14]} and a′ is one of the 5-year age bands of the infecƟon-and-contact model,

or a is one of the 5-year age bands and a′ ∈ {[0− 4], [5− 9], [10− 14]}, tschool-closem is the Ɵme index when school

closures were ordered or recommended in locaƟonm, Cm,a,a′ are the baseline pre-COVID-19 contact intensiƟes

described in locaƟon m in SecƟon S3.2.2, CCOV ID−0−14
a,a′ are the average contact intensiƟes derived from [51],

and τ is a new scaling factor that we introduce for the purpose of sensiƟvity analyses.

To gauge a reasonable range of τ values, we first calculated the contact intensity raƟos between the city-level

contact matrices in [51] with the contact intensiƟes CCOV ID−0−14
a,a′ that were used in the central analysis. The

maximum contact intensity raƟo was 2.00 and the minimum was 0.15. Using data from the UK post lockdown

contact survey of Jarvis and colleagues [63], we also computed themean contact intensiƟes from individuals aged

18+ with children aged 0− 4 and children age 5− 17. We repeated calculaƟons for the average post-lock down

contact matrix CCOV ID−0−14 of Zhang [51]. The minimum and maximum raƟo in the corresponding contact

intensiƟes were 1.15 and 1.82. We thus performed two sensiƟvity analyses using τ = 0.5 and 2, subject to the

constraint that the resulƟng contact intensiƟes during lockdown were not larger than those at baseline.

Further, we undertook a fourth sensiƟvity analysis in which themobility trends seen among individuals 18-24were

extrapolated to younger individuals aged 0-17. In this analysis, Ɵme-varying contact intensiƟes were esƟmated

based on EquaƟon (S15) for all age groups, and the data from the Zhang et al. contact surveys were not used.

Figure S38 compares, for one locaƟon, the implied contact intensiƟes used in the sensiƟvity analyses to those in

the central analysis, which are shown as τ = 1.
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Figure S38: Comparison of contact intensiƟes from and to children aged 0-14 during periods of school closures

in the sensiƟvity analyses. (A) Rescaled contact intensiƟes based on esƟmates of Zhang and colleagues [51].

Shown are contact intensiƟes from and to children under EquaƟon (S82) for different values of τ . The value τ = 1

corresponds to the central model. (B) Inferred contact intensiƟes from and to children based on extrapolaƟng

mobility trends of individuals aged 18-24 to younger individuals. Shown are the esƟmated contact intensiƟes in

California on April 15, 2020. Parts of the Ɵme varying contact matrices that are the same in the central model and

the sensiƟvity analyses are ploƩed in grey.

Then, we re-fiƩed the contact-and-infecƟon model. Figure S39 compares esƟmates of age-specific reproducƟon

numbers, and the contribuƟon of age groups to onward spread under the central and alternaƟve models. The

alternaƟvemodel assumpƟons lead to considerable differences in esƟmated reproducƟon numbers by age groups.

For children aged 0−9, we esƟmate reproducƟon numbers ranged from 0.30 [0.26, 0.34] to 0.75 [0.66, 0.86] as τ
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Figure S39: Age-specific weekly reproducƟon numbers and contribuƟon of age groups to onward spread under

the central model and under the alternaƟve models using different assumpƟon on contact intensiƟes from and

to children aged 0-14. Shown are on top the esƟmated age-specific weekly reproducƟon numbers for the week

starƟng on August 17, 2020 under the central model (yellow) and the alternaƟve models (black), and below the

esƟmated cumulaƟve contribuƟon of age groups to onward spread as of August 24, 2020. (A) Results for contact

intensiƟes from and to children aged 0-14 under different τ parameters, see (S82). The value τ = 1 corresponds

to the central model. (B) Results for contact and intensiƟes from and to children aged 0-14 that are obtained by

extrapolaƟng the mobility trends from individuals 18-24 to younger individuals. Dots and error bars indicate the

median posterior and the 95% confidence intervals, respecƟvely.
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increased from 0.5 to 2, and for individuals aged 10-19we esƟmate reproducƟon numbers ranged from 0.89 [0.79,

1.01] to 0.91 [0.82, 1.02] as τ increased from 0.5 to 2. ReproducƟon numbers were similar to those obtained

under the central model under the alternaƟve model in which mobility trends for individuals aged 18-24 were

extrapolated to younger individuals. However these differences had liƩle impact on the esƟmated contribuƟon of

different age groups to onward spread. For children aged 0 − 9, we esƟmate the contribuƟon to onward spread

increased from 0.59% [0.38%-0.93%] to 2.23% [1.50%-3.38%] as τ increased from 0.5 to 2. For individuals aged

10-19, we esƟmate the contribuƟon to onward spread increased from 9.76% [8.96%-10.56%] to 10.13% [9.39%-

10.90%] as τ increased from 0.5 to 2. In the alternaƟve model in which mobility trends for individuals aged 18-24

were extrapolated to younger individuals, the esƟmated contribuƟon to onward spread from children aged 0-9

was 1.74% [1.03%-3.06%], and the esƟmated contribuƟon to onward spread from individuals aged 10-19 was

11.90% [11.03%-13.25%].
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