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S1 Supplementary Text: National mobility indicators during the pandemic

S$1.1 Age-specific U.S. foot traffic

To characterise changes in human contact patterns during the pandemic, Foursquare Labs Inc. provided longi-
tudinal U.S. foot traffic data across the 50 U.S. states, the District of Columbia, and New York City [1l]. The data
are based on Foursquare’s US first-party panel that includes millions of opt-in, always-on active users. Visits are
derived via Foursquare’s core location technology, Pilgrim [2], which leverages a variety of mobile device signals to
pinpoint the time, duration, and location of panelists’ visits to locations such as shops, malls, restaurants, concert
venues, theaters, parks, beaches, or universities. From operated and partner apps, Foursquare Labs Inc. collect
a variety of device signals against opted-in users. These include intermittent device GPS coordinate pings, WiFi
signals, cell signal strength, device model, and operating system version. Additionally, a smaller set of labeled ex-
plicit check-ins are captured from a portion of the user panel. Check-ins are explicit confirmations that a user was
at a given venue at a given point of time. One example source of this is Foursquare’s Swarm app, where users can
“check in” to venues to keep a log of where their mobility history. These check-ins then serve as training labels for
a non-linear model that is used to predict visits among users with unlabeled visits in terms of probabilities as to
which venue users ultimately visited. For research and insights use cases, the probabilities are processed further,
projected and aggregated by state / metropolitan area, day, and age cohort. This projection accounts for changes
in the number of individuals in the panel and the representativeness of panelists according to their home state or

metropolitan area, age band, and gender relative to latest US Census data.

Daily projected visit volumes were available at state / metropolitan area-level from February 1, 2020 to August

21, 2020 for individuals for 6 age groups
iecd= {[18 —24],[25 — 34], [35 — 44], [45 — 54], [55 — 64], [65+]}. (51)

Daily projected visit volumes were standardised to projected per capita visits V,,, + 5z of individuals in state /
metropolitan area m and age band a on day ¢ by dividing the visit volumes with the number of individuals in
state / metropolitan area m and age band a. Per capita visits appeared low for the first two days of the time
series, and were excluded. Data updates were obtained from May 26 onwards. Per capita visits appeared low for

May 25, and were replaced with the values from May 24.

Figure illustrates the pre-processed time series of projected per capita visits V,, ¢ 5. Individuals in New York
City, New York, and Hawai were projected to have considerably more per capita visits than other states and

metropolitan areas. Across states and metropolitan areas, projected per capita visits were highest for individ-
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uals aged 35 — 44 years, both before and after stay at home orders were issued. Individuals aged 65 or older had

lowest projected per capita visits across all states and metropolitan areas.

$1.2 Age-specific U.S. mobility trends

Age-specific mobility trends were derived from the U.S. foot traffic data described in Section F1.3. Our aim was to
quantify changes in U.S. foot traffic during the pandemic relative to a baseline period for individuals in the 5-year
age bands (510) in each of the U.S. states, the District of Columbia, and New York City. The baseline period was
defined from February 3 to February 9, 2020, which corresponded to the first week of the time series of projected

per capita visits. We first calculated average projected per capita visits during the baseline week,

Ve = N Viea (52)
te{Feb3—Feb 9}

and then derived the mobility trends

Xm,t,& = ‘/m,t,&/vybase (53)

n,a

for each state / metropolitan area m and the age bands a available through the U.S. foot traffic data.

$1.3 Quantitative Analysis

To characterise different effects during the initial phase of the pandemic, the time when stay at home orders were
introduced, and later time periods, we derived two particular time points for each state or metropolitan area. The
first time point characterises the start of substantial declines in mobility across all age groups, and the second time
point characterises the time after which mobility trends begin to rebound. To determine the two time points we
calculated the 15-days central moving average of projected per capita visits in each location (state or metropolitan

area) m,

15
. 1 1
X;nn,atvg:mz Z ZXm,t+s,d7 (S4)
s=—15 a

where A is the number of age groups in the mobility data specified in (§7)), such that A = 6. The first time point,
which we refer to as the dip date, was determined as the first day when the 15-days moving-average had fallen

by over 10% compared to the one two weeks prior,

t9% = min{t : X%/ X%, < 0.9} (S5)

m,t m,t—1
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Figure S11: Projected per person foot traffic per day for the 50 US states, District of Columbia and New York

City. Data were obtained using Foursquare’s location technology Pilgrim that pinpoints the time, duration, and

location of panelist’s visits.
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The second time point, which we refer to as the rebound date, was determined as the day with the smallest
15-days moving-average,

bound

t;sl oun

X mave (S6)

= argmint>tgarf mit
where tdP < trebound 'y, - Using different time intervals in the central moving average calculations did not alter
the value of change points substantially (not shown). Figure shows the mobility trends (§3) for every U.S.

state, the District of Columbia, and New York City, along with the dip and rebound dates.

We then assessed differences in the age-specific mobility trends around the rebound date when compared to the
baseline week in early February, and similarly in the last observation week when compared to the baseline week.
To do this, age-specific mobility trends were selected from the calendar week that included the rebound date.
Then, Gamma regression models with log link, and location and age category interaction terms were fitted to the
selected daily mobility trends. Negative regression coefficients with a two-sided p-value below 0.05 were inter-
preted as age groups showing statistically significantly lower mobility compared to the baseline week. Similarly,
positive regression coefficients with a two-sided p-value below 0.05 were interpreted as age groups showing sta-
tistically significantly higher mobility compared to the baseline week, and regression coefficients with a two-sided
p-value above 0.05 were interpreted as age groups showing mobility trends that were not significantly different
compared to the baseline week. Figure F13 (left) summarises the results. In the rebound week, mobility was

significantly lower when compared to the baseline week across all age groups and all locations.

We repeated the analysis for the last observed calendar week (Aug 10-Aug 16). In the last week, there was substan-
tial variation in mobility trends when compared to baseline. Among individuals aged 18-24, mobility had remained
significantly lower when compared to baseline in 42 (80.8%) states or metropolitan areas, was not significantly
different when compared to baseline in 6 (11.5%) states or metropolitan areas, and significantly above baseline
in 4 (7.7%) states or metropolitan areas. Among individuals aged 25-34, mobility had remained significantly lower
when compared to baseline in 29 (55.8%) states or metropolitan areas, was not significantly different when com-
pared to baseline in 17 (32.7%) states or metropolitan areas, and significantly above baseline in 6 (11.5%) states
or metropolitan areas. Among individuals aged 35-44, mobility had remained significantly lower when compared
to baseline in 25 (48.1%) states or metropolitan areas, was not significantly different when compared to baseline
in 20 (38.5%) states or metropolitan areas, and significantly above baseline in 7 (13.5%) states or metropolitan
areas. Among individuals aged 44-54, mobility had remained significantly lower when compared to baseline in
22 (42.3%) states or metropolitan areas, was not significantly different when compared to baseline in 23 (44.2%)
states or metropolitan areas, and significantly above baseline in 7 (13.5%) states or metropolitan areas. Among in-
dividuals aged 55-64, mobility had remained significantly lower when compared to baseline in 23 (44.2%) states or

metropolitan areas, was not significantly different when compared to baseline in 21 (40.4%) states or metropoli-
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Figure S12: Mobility trends per person per day for the 50 US states, District of Columbia and New York City
(part 1). Mobility trends quantify change in projected visits relative to the baseline week February 3 to February
9, 2020. The two dashed lines indicate the dip and rebound time, defined respectively in (§5) and (F§).
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Figure S12: Mobility trends per person per day for the 50 US states, District of Columbia and New York City
(part 2). Mobility trends quantify change in projected visits relative to the baseline week February 3 to February
9, 2020. The two dashed lines indicate the dip and rebound time, defined respectively in (§5) and (5§).

tan areas, and significantly above baseline in 8 (15.4%) states or metropolitan areas. Among individuals aged 65+,

mobility had remained significantly lower when compared to baseline in 29 (55.8%) states or metropolitan areas,
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was not significantly different when compared to baseline in 14 (26.9%) states or metropolitan areas, and signif-
icantly above baseline in 9 (17.3%) states or metropolitan areas. This analysis suggests that overall, individuals
aged 18-24 continue to limit their mobility substantially when compared to early February. For individuals aged
25 and above, mobility trends are heterogeneous across the United States, with mobility levels remaining below

those seen in early February in approximately half of all states or metropolitan areas.

To obtain further insights into age-specific mobility trends between age groups, we repeated the regression analy-
sis using as predictors the contrasts between all age groups and the 35-44 age group. Figure (right) summarises
the results. In the rebound week, individuals aged 18-24 had significantly lower mobility trends when compared
to individuals aged 35-44 in 49 (94.2%) states or metropolitan areas, similar mobility trends in 2 (3.8%) states or
metropolitan areas, and higher mobility trends in 1 (1.9%) states or metropolitan areas. Individuals aged 25-34,
45-54, 55-64 tended to have similar mobility trends when compared to individuals aged 35-44. Individuals aged
65+ tended to have overall significantly lower mobility trends when compared to individuals aged 35-44. Results
for the last observed calendar week (Aug 10-Aug 16) are summarised in the last column of Figure §13. In the last
week, individuals aged 18-24 had significantly lower mobility trends when compared to individuals aged 35-44
in 20 (38.5%) states, similar mobility trends in 31 (59.6%) states, and higher mobility trends in 1 (1.9%) trends.
Individuals aged 25-34, 45-54, 55-64, 65+ tended to have similar mobility trends when compared to individuals

aged 35-44. The Foursquare data suggest that

¢ individuals aged 18-24 reduced their mobility more strongly than individuals aged 35-44 in the initial phase
of the pandemic, and continue to be significantly less mobile than individuals aged 35-44 as of the last

observation week;

e individuals aged 18-34 have lower or similar, but not significantly higher mobility when compared to indi-

viduals aged 35-44 as of the last observation week;

¢ individuals aged 654 showed different behaviour. In the initial phase of the pandemic individuals aged 65+
appear to have reduced their mobility significantly more than individuals aged 35-44, however by the last

observation week, individuals aged 654 appear to be as mobile as individuals aged 35-44.

S$1.4 Comparison to an independent U.S. mobility trend data set

To substantiate the trends observed in the national Foursquare data set, we evaluated an independent data set

of age-stratified mobility indicators that was provided by Emodo. The Emodo data set quantifies the proportion
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Figure S13: Statistical analysis of mobility trends. (Left) Mobility trends during the calendar week that includes
the rebound date were categorised as statistically significantly lower when compared to the baseline week, not
significantly different, and statistically higher. Analysis was repeated for mobility trends during the last complete
calendar week. (Right) Mobility trends during the calendar week that includes the rebound date were categorised
relative to trends among individuals aged 35 — 44 in the same week. Analysis was repeated for mobility trends

during the last complete calendar week.

of individuals with at least one observed ping outside the user’s home location, out of a panel of individuals
whose GPS enabled devices emitted at least one ping on the corresponding day. The observed, age-specific, daily
mobility indicators within the panel were projected to location-level mobility indicators. The projection accounts
for changes in the number of individuals in the panel, and the representativeness of panel members in their home

area, age band, and gender relative to the latest U.S. Census.

Daily projected mobility indicators ffmt,& were available at state / metropolitan area-level m from Feb 01 to Jul

26 for individuals between the age groups

ied= {[18 —24),[25 — 34], [35 — 44], [45 — 54], [55+]}. (57)
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To compare the data against the age-specific Foursquare mobility trends (83), we derived mobility trends similarly
as for the Foursquare data. We first calculated average mobility trends during the baseline period,

 7base 7
Vm,é = Z Vin,t.a (S8)
te{Feb 19—Mar 03}

and then derived the mobility trends

Xm,t,?z = um,t,d/‘v/;gajsae (59)

for each location (states or metropolitan area) m and the age bands a.

Initial analysis indicated that the mobility trends (§9) were noisy for some locations. For this reason, analysis was
limited to location with an average of 20, 000 distinct panelists per day per age band, and the baseline period in
(B8) was defined over 14 days. In total, data from 11 locations were used. Figure compares the age-specific
mobility trends derived from the Foursquare data to those derived from the Emodo data set. Overall, the trends

observed in both data sets were very similar.

The primary aim of this analysis was to assess whether the Emodo data support the above observation that young
individuals aged 18 — 24 and 25 — 34 continue to have mobility trends significantly below or similar to the baseline
period, and mobility trends that are not significantly higher than those seen for older individuals. We repeated the
analyses presented in Section F1.2, with the last observation week set to the last complete week of observations in
both data sets (July 20-July 26). Figure summarises the results. The Emodo data substantiate that individuals
aged 18-24 continue to have mobility trends below those seen in the baseline period, and that individuals aged
25 — 34 have mobility levels similar to those seen at baseline, and not higher than seen at baseline. We further
find the Emodo data support the conclusion that individuals aged 18-24 and 25 — 34 have lower or similar mobility

levels than individuals aged 34-45, and not higher mobility levels than individuals aged 34-45.
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Figure S14: Comparison of mobility trends derived with Foursquare’s location technology and Emodo’s mobility

data. The comparison was restricted to identical age bands in the two data sets, a common range of observation

days, and states and metropolitan areas with an average of at least 20, 000 panelists per day.
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Figure S15: Statistical analysis of mobility trends in the Foursquare and Emodo data sets. (Left) Considering
both data sets, mobility trends during the calendar week that includes the rebound date were categorised as
statistically significantly lower when compared to the baseline week, not significantly different, and statistically
higher. Analysis was repeated for mobility trends during the last complete calendar week. (Right) Considering both
data sets, mobility trends during the calendar week that includes the rebound date were categorised relative to
trends among individuals aged 35 — 44 in the same week. Analysis was repeated for mobility trends during the

last complete calendar week.

S2 Supplementary Text: Age-specific COVID-19 mortality data

Daily COVID-19 death counts from February 01, 2020 until September 02, 2020 regardless of age were obtained
from John Hopkins University (JHU) for all U.S. states and the District of Columbia [B], except New York State. For
New York State, daily COVID-19 death counts from February 01, 2020 until September 02, 2020 were obtained
from the New York Times’ (NYT) data [4]. For New York City, daily COVID-19 deaths counts were obtained from
the GitHub Repository [5]. The overall death counts were used for statistical inference prior to when age-specific

death counts were reported for each location (state or metropolitan areas).

Age-specific COVID-19 cumulative death counts were retrieved for 40 U.S. states, the District of Columbia and
New York City from city or state Department of Health (DoH) websites, data repositories or via data requests to
DoH. Table g lists our data sources for each location, the date since when age-specific mortality data used in this

study was recorded, and the frequency of data updates.
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The recorded death counts were processed to create a time series of daily deaths for every location. Some dates
had missing data, typically either because no updates were reported, or because reporters changed the age bands
in which the mortality data were reported. Missing daily death counts were imputed, assuming a constant increase
in daily deaths between two days with data. Some updates displayed a decreasing cumulative death from one
day. When this was observed, the daily death count was set to zero and the previous daily death count was
reduced by the count difference. Finally, certain age bands declared by the Department of Health could not be
directly associated with the age bands used in the analysis, defined in (§10). In this case, the boundaries of these
problematic age bands were modified to reflect the closest age band from the analysis. Figure 51§ illustrates the
age-specific COVID-19 mortality data that were retrieved. To assess the completeness of the age-specific death
data, we compared the time evolution of the sum of the age-specific deaths that we retrieved to the time evolution
of the overall number of COVID-19 deaths reported by JHU [B] and the New York City Github Repository [F].
Figure confirms that the sum of the age-specific data that we retrieved closely matched the overall death

data.
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Location Date record start  Frequency of updates Source
Alabama May 03, 2020 Daily [6]
Alaska June 09, 2020 Daily [7]
Arizona May 13, 2020 Daily 8]
Arkansas - - -
California May 13, 2020 Daily 8]
Colorado March 23, 2020 Daily [@a]
Connecticut April 05, 2020 Daily [A7]
Delaware May 12, 2020 Daily [12]
District of Columbia | April 13, 2020 Daily [A3]
Florida March 27, 2020 Daily [d4]
Georgia May 06, 2020 Daily [A5]
Hawaii - - -
Idaho May 13, 2020 Daily [d6]
lllinois May 14, 2020 Daily [@z
Indiana May 13, 2020 Daily (18]
lowa May 13, 2020 Daily [a9]
Kansas May 13, 2020 Mon, Wed and Fri. [20]
Kentucky May 13, 2020 Daily [27]
Louisiana May 12, 2020 Daily except Sat. [22]
Maine March 12, 2020 Daily [23]
Maryland May 14, 2020 Daily [24]
Massachusetts April 20, 2020 Daily [25]
Michigan March 21, 2020 Daily [26], [27]
Minnesota - - -
Mississippi April 27, 2020 Daily [28]
Missouri May 13, 2020 Daily [29]
Montana - - -
Nebraska - - -
Nevada June 07, 2020 Daily [BQ]
New Hampshire June 07, 2020 Daily [B1]
New Jersey May 25, 2020 Daily B2]
New Mexico March 25, 2020 Daily [B3]
New York - - -
New York City July 01, 2020 Daily [34], [5]
North Carolina May 20, 2020 Daily [B5]
North Dakota May 14, 2020 Daily [B6]
Ohio - - -
Oklahoma May 13, 2020 Daily [B71
Oregon June 05,2020 Mon-Fri., sometimes Sat. B8]
Pennsylvania June 07, 2020 Daily [B9]
Rhode Island June 01, 2020 Weekly [40]
South Carolina May 14, 2020 Tue and Fri. [47]
South Dakota - - -
Tennessee April 09, 2020 Daily [42]
Texas July 28, 2020 Daily [43]
Utah June 17, 2020 Daily [44]
Vermont June 16, 2020 Daily [45]
Virginia April 21, 2020 Daily [46]
Washington June 08, 2020 Daily [47]
West Virginia - - -
Wisconsin March 15, 2020 Daily [48]
Wyoming - - -

Table S8: Age-specific Mortality Data source, date of first availability and update frequency by location (state

and metropolitan area). The data are available in the GitHub repository [49].
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Figure S16: Age-specific COVID-19 mortality data in the United States (part 1). COVID-19 related deaths were
recorded as reported by city or state DoH. Shown is the percent contribution of age groups to cumulated deaths
(colours) from the first day on which the death by age was recorded.. The start of the x-axis is the same in every

figures and corresponds to the day with the first observation of death by age across all locations (states and

metropolitan areas).
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Figure S16: Age-specific COVID-19 mortality data in the United States (part 2). COVID-19 related deaths were
recorded as reported by city or state DoH. Shown is the percent contribution of age groups to cumulated deaths
(colours) from the first day on which the death by age was recorded.. The start of the x-axis is the same in every

figures and corresponds to the day with the first observation of death by age across all locations (states and

metropolitan areas).
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Figure S16: Age-specific COVID-19 mortality data in the United States (part 3). COVID-19 related deaths were
recorded as reported by city or state DoH. Shown is the percent contribution of age groups to cumulated deaths
(colours) from the first day on which the death by age was recorded. The start of the x-axis is the same in every
figures and corresponds to the day with the first observation of death by age across all locations (states and

metropolitan areas).
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Figure S17: Comparison of the Covid-19 overall death between the Department of Health death by age data

with the overall death from JHU [3], and the New York City Github repository (for NYC) [5].
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S3 Supplementary Text: Bayesian semi-mechanistic SARS-CoV-2 infection

model

Figure S2, also reproduced here as Figure F1§, summarises the main components of the age-specific contact and

infection model. Section F3.] describes the infection component of the model, and Section §3.2 describes the

contact component of the model. Section F3.3 describes how the model is fitted against age-specific mortality

data. Section F3.4 specifies input parameters and prior distributions. Table §9 gives an overview of the model

parameters and associated prior distributions. Section 3.8 describes the generated quantities of the contact and

infection model. Finally, Section 3.5 provides details on computational inference.
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Figure S18: Overview of the age-specific contact and infection model.
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Section
Name Estimated Prior Notes
reference

Initial number of infections yes 108 €1 2,120 54] ~ N(4.5,0.62%), infections seeded among individuals aged 20-54 Section p3.4.7

Cm,t,a =0, fora ¢ [20 — 54], with log-normal prior with mean XX

wheret =1,...,6.
Infection parameters yes Ro.m ~ N(S.QS, K) Based on [50] Section 3.4.7
Susceptibility to infection yes log f’[o 14~ N( 1.07,0.22%)  Susceptibility was modelled relative to individuals aged 15-64, Section p3.4.7]

log p[65+] ~ N(0.38,0.162) with lower susceptibility to infection among individuals aged 0-14,

and higher susceptibility among individuals aged 65+.
Based on [51]]

Discretized generation time distribution | no - Based on [52] Section 3.4.7
Baseline age-specific contact matrix no - Predicted based on locations’ age composition and population density Section §3.4.2
before mobility decreased for weekdays and weekends
Mobility trend predictors no Decomposed into 3 components to allow for varying effect sizes Section p3.4.7
Regression coefficients to describe yes eased N (e 52 1) Location-specific random effects to quantify the effect of Section f3:4-2
time-varying contact intensities peased N(0,1) rapid decreases in mobility between the dip date and the rebound date.
before the rebound date. Ceased ~ Exp(10) Effects are assumed to be constant across age groups.
Regression coefficients to describe yes (BUPSWiNE _ pupswing - gupsWing Location-specific and time-varying random effects to quantify the effect of Section §3.4.2
time-varying contact intensities [BuPSWing , \f(upswing nfpswmg) increasing mobility levels over the longer period after the rebound date.
after the rebound date. BuPswing ~ Af(0,1) Effects are assumed to be constant across age groups. Time-varying effects

Oupswing ~ Exp(10) are modelled with a bi-weekly AR(1) process that is the same across locations

LPSWInE Ele(t)/2) and age groups.

€1~ /\/’[o,oo)((), 0.025)

Ey ~ [O,W)(ev_l,ag)forv >1

o. ~ Exp(10)
Location and age-specific yes Tm,a = Ta X Om, @ The prior distribution on age-specific fatality ratios 7, is based on a Section p3.4.3
infection fatality ratios logmy ~ N (g, 0 ) re-analysis of data from several sero-prevalence studies, and similar to

108 6y, [20—49) ~ N (0, o? 20-49] ) the relationship estimated in [53]. 4, 04 are specified in Table F13.

108 61, [50—69) ~ N (0, T150—69] ) Location-specific random effects account for spatial heterogeneity.

108 8,704 ~ EXP(A7047)

T20—49], T[50—69] ~ Exp(10)

/\[70+] ~ EXP(0.05)
Infection-to-death distribution no - As in [54] Section 3.4.3
Overdispersion parameter yes ¢~ /\/'[0,0@(0., 5) As in [54] Section f3.4.3

Table S9: List of inputs and model parameters.
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In the model, SARS-CoV-2 spreads via person-to-person contacts. Person-to-person contacts are described at
the population level with the expected number of contacts made by one individual, referred to as contact in-
tensities. Contact intensities are age-specific. Contact intensities vary across locations (states and metropolitan
areas) according to each location’ age composition and population density, and change over time. Data from
contact surveys before the pandemic are used to define baseline contact intensities. Data from age-specific, cell
phone derived mobility trends are used to estimate changes in contact intensities during the epidemic in each
location, among individuals aged 15+. Contact intensities involving individuals aged 0-14 are defined based on
contact surveys conducted during the pandemic. Infection dynamics in each location are modelled through age-
specific, discrete-time renewal equations over time-varying contact intensities. Natural disease parameters such
as age-specific susceptibility to infection, the generation time distribution, and symptom onset and onset to death
distributions are informed by epidemiologic analyses of contact tracing data. Age-specific infection fatality ratio
estimates are informed by large-scale sero-prevalance surveys. Disease heterogeneity is modelled with random
effects in space and time on contact intensities and disease parameters. The model returns the expected number
of COVID-19 deaths over time in each location, which is fitted against age-specific, COVID-19 mortality data. New

data sources presented in this study are indicated in double-framed boxes.

S3.1 Infection model

The time evolution of SARS-CoV-2 infections is quantified in terms of a discrete-time age-specific renewal model.
The discrete renewal model arises as the expected value of an age dependent branching process. The model
extends a previous version to age-specific disease dynamics [54]. In the renewal equations, we model populations

stratified by the 5-year age bands A, such that
a€ A= {[O —4],[5-9],...,[75 — 79],[80 — 84], [85+]}, (510)

resulting in A = 18 population strata. We denote the number of new infections, ¢, on day ¢, in age band a,
and location m as ¢y, 1,4, With ¢y, 1 > 0 for all ¢, m, a. Here infections are taken to be both symptomatic and
asymptomatic. We introduce a series of daily contact intensity matrices C,,,; of dimension 18 x 18 in each location
m. The time changing contact intensities C,,, ; were modelled in a regression framework that uses as input pre-
pandemic contact intensities, which will be presented in Section §3.4.7, as well as the age-specific mobility trends
Xm,t,a that are described in Supplementary Text F1. Entry Cint,a,a’ quantifies the expected number of contacts
that one person in age group a has with persons of another age a’ on day t in location m, which we refer to as
contact intensity. We further consider the probability p,- that a contact with an infectious person leads to infection

of one person in a’. We interpret p,s as a natural disease parameter that is region and time independent. We
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model p,’ as the product of a constant baseline parameter pg, and relative susceptibility parameters pf, fora’ € A
through
par = po % ply = exp(log po + log p). (S11)

To ensure a relative interpretation of the susceptibility parameters, we set pf, = 1 for some age bands. Details
are given in Supplement §3.4.3. This allows us to describe the time-varying reproduction number on day ¢ from
one infectious person in a in location m with
Rmta=Y_ Smta Pa Contiasa’s (512)
o
where s,, ¢ o/ is the proportion of the population in location m and in age band a’ that remains susceptible to

SARS-CoV-2 infection. It is given by
t—1
Zs:l Cm,t,a’

b
Nm,a/

where N, .- denotes the population count in age group a’ and location m. Extending the basic renewal model,

Sm,t,a’ = 1- (513)

we obtain similarly

t—1
Cm,t,a’ = Sm,t,a’Pa’ Z cm,t,a,a’ (Z Cm,s,a g(t - S)) (514)
a s=1

where g is the discretized generation time distribution as in [564]. This is because an individual of age a’ in country
m at time ¢ makes contacts with individuals of age a at rate C,;, 1 4./, and these are successful with probability p,/
if and only if 1) the individual in @’ is susceptible, which is the case with probability s,, ; 4/, and 2) the individual

in a is still infectious, which is the case with probability g(t — s).

$3.2 Time-varying contact patterns
S$3.2.1 Overview.

Several studies have collected data on age-specific contact patterns in various settings across the United States
prior to emergence of SARS-CoV-2 [55, 56, 57, 58]. However, little data are available on how contact patterns
changed during the pandemic. These considerations prompted us to take a predictive approach. First, we used
data from the Polymod study [59] to predict baseline contact matrices during the early part of the pandemic for
each location, which we denote by C,,. The pre-pandemic contact matrices quantify the expected number of
contacts from one person in age band a with individuals in age band a’ per day in location m, also known as
contact intensities. Populations were stratified by 5-year age bands a € A defined in (510). Reflecting differences

in contact patterns during weekdays and on weekends, distinct pre-pandemic contact matrices were generated
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for weekdays and weekends, €% and C"*"d. For simplicity we suppress the weekday and weekend notation in

m

what follows, with all equations being analogous. Details are presented in Section §3.2.2.

Second, we used the age-specific mobility trend data available for individuals aged 18+ to predict time-varying
contact intensities among individuals aged 154-. Overall, time changing contact intensities on day ¢ in location m
were modelled through

cm,t,a,a’ = Tm,t,a cm,a,a’ Tim,t,a’ s (515)

where a € {[15 — 19],[20 — 25],...,[85+] }and &’ € {[15 — 19],[20 — 25],. .., [85+]}. The multipliers 1, ;.4
describe the estimated effect of the age-specific mobility trends X,,, ; , on changes in pre-pandemic contact ma-
trices for each location. Since both the index person and the contacted individuals are changing their mobility over

time, the multipliers are applied to the rows and columns of the contact intensity matrix. Details are presented in

Section f3.2.3.

Third, we used data from two contact surveys conducted after school/nursery closures to specify contact intensi-

ties from and to children aged 0-14. Details are presented in Section §3.2.4.

$3.2.2 Baseline contact intensity matrices prior to changes in mobility

We first obtained estimates of weekday and weekend contact matrices for 8 European countries from the Polymod
contact survey [60]. Briefly, survey participants were recruited in such a way as to be broadly representative of
the whole population in terms of geographical spread, age, and sex. Participants were asked to keep a diary of
their contacts. The study included 7,290 participants recruited between May 12, 2005 and September 05, 2006.
Contact intensities were estimated for Belgium, Germany, Finland, Italy, Luxembourg, the Netherlands, Poland,
and the United Kingdom using the approach of [61], using code at the Github repository [62]. We index each
of the European countries with e. The posterior median estimates of the number of individuals in age &’ that
were contacted per day by one individual in age a were extracted. Using the available methodology, populations
were stratified in 1-year age bands. Figure illustrates the estimated weekend and weekday contact intensity

matrices for the 8 European countries.

To match the population stratification in the SARS-CoV-2 infection model, the estimated contact intensities at

1-year resolution were aggregated to 5-year resolution using

Ne a
Ceaar = Z T~ v 0 Ceaas (S16)
aca,a’'€a’ ( Z&Ea Ne,d)

where N, ; denotes the number of individuals in 1-year age band a in the corresponding European country e. The
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Figure S19: Estimated contact intensities for the 8 Polymod countries by weekday and weekend.
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estimated contact intensities C. , o+ were real-valued and positive.

Next, we constructed a predictive statistical model of contact intensities based on population demographics in-
cluding the total population size, the number of individuals in age band d/, the proportion of individuals in age
band @/, and population density. Regression models were fitted based on the 8 x 18 x 18 = 2, 592 estimates (516
from the European-wide Polymod survey, separately for weekdays and weekends. The chosen statistical model

was of the form

log ce,a,a’ ~ N(Ne,a,a’v 02) (517a)

N o /
He,a,a’ = ea,a/ + 91;77’: + 92 IOg IZ: )

(S17b)

where 0, . are pairwise age-specific baseline terms, N, , is the number of individuals in age band &’ in location
e, and A, is the land area of location e in square kilometres. The least squares estimates of #; and 0> were positive
and highly significant for both weekday and weekend contact intensities, so that under model (§17) contact inten-
sities with individuals of age a’ increase as the proportion of the population of age a’ increases, and as population
density increases. The fits of model (§17) through the training data are illustrated in Figure F20. The leave-one-
out cross-validation mean absolute error associated with model (§17) was 0.361 and 84.1% of the variance was

explained.

Baseline contact matrices for the 50 U.S states, the District of Columbia and New York City were then predicted
using (5§17). Figure 527 shows the predicted baseline weekday contact matrices C,, for all locations. The pre-
dicted contact matrices are consistent with key characteristics of human contact patterns, including high number
of contacts between children and teenagers of same age, parent-child interactions, broader workforce interac-
tions, and child/parent-grandparent interactions. Figure illustrates location-specific differences in predicted
contact intensities relative to the national average. In locations with young populations such as Alaska, the Dis-
trict of Columbia, Texas or Utah, lower contact intensities are predicted with individuals in young age groups when
compared to the national average. Similarly, in locations with older populations such as Maine, higher contact
intensities are predicted with individuals in older age groups when compared to the national average. Figure 23
illustrates that locations with high population density such as the District of Columbia and New York City are pre-
dicted to have higher contact intensities compared to the national average. Figure compares predicted con-
tact intensities on weekdays to those predicted for weekends. Predicted contact intensities were higher between

children and the elderly individuals on weekends compared to weekdays for all locations.
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Figure S21: Predicted age-specific contact matrices for the 50 US states, District of Columbia and New York City

prior to the pandemic, on weekdays. Shown in colour are the predicted number of contacts made by one index

person of

age a with individuals of age a’ per day. Locations ordered by population density.
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Locations ordered by population density.
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Figure S23: Predicted number of expected contacts by one index individual of age a per day. Locations ordered

by population density, national average shown in black. Predictions shown for weekdays.
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Figure S24: Difference in contact intensities at weekends compared to weekdays. Locations ordered by popula-

tion density.
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$3.2.3 Time-varying contact intensities among individuals aged 15+

The time changing multipliers 7, ; , to the rows and columns of the pre-pandemic contact matrices were obtained
through a regression model using the age-specific mobility trends §3 as predictors. To age stratification (§10) used

in the model, we expanded the original mobility trends through

o Xm,t,& ifa €a
Xm.ta = { Xt s—2a ifa € {[15—19], [20 — 24]}. (518)

This step assumed that the mobility trends among individuals aged 15-18 are represented by the observed mobility

trends among individuals aged 18 — 24.

To model different effects around the time of stay at home orders and later time periods, the mobility trends
were decomposed into three components. The three components are a baseline mobility trend denoted by
XPbase  an eased mobility trend which we denote by X2¢¢ and an upswing multiplier that we denote by X PS8

m,t,a’ m,t,a’ m,t,a *

The decomposition satisfies the relation

Xt = Xoita x Xitta x Xia® (s19)
forallm, ¢, and a € {[15 — 19],[20 — 24],. .., [85+]}. Specifically, the base mobility trends, the eased mobility

trends and multipliers were defined as

H dip
Xbase — Xm,t,a ift < tm ’ (5203)

m,t,a )
1 if t > ¢dip

m

1 ift < tdie

£ 1dip rebound
Xeased — Xm,t,a i tm st< tm ’ (SZOb)

m,t,a
Xl if ¢ > trepeund and ¢ is a weekday,

xend - if ¢ > trepound and ¢ is a weekend,

1 if t < tdp,
£ 1dip rebound
Xupsglving _ ! if tm St< tm ) (SZOC)
m,t,a
Xont.a/X 9 ift > trebound and ¢ is a weekday,

m,a

Xonta/ X0t ift > 2o and ¢ is a weekend,

where x /% is the average of the mobility trend X, 1 , over the 5 weekdays before ¢/2°°U", and y %" is the aver-

age of the mobility trend X, ; , over the 4 weekend days before trebound Figyre G279 illustrates the decomposed

mobility trends for four locations.
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Figure S25: Decomposition of mobility trends, shown for 4 US locations. For each location, the change point in
overall mobility trends was determined using a 10-day moving average. Age-specific mobility trends were then
decomposed into eased mobility trends and multipliers as shown. The vertical dash lines indicate the change

points when mobility dipped and began to rebound.

With the decomposed mobility trends, we modelled the multipliers in (§I5) that quantify the time evolution in

contact intensities through

oo = exp (108 X225, + 05 log X+
S21
ﬂupswing Iog Xupswing) ( )

mt m,t,a

where (3%3¢¢ is varying across locations, and """ is varying in space and time. The purpose of the eased

mt

mobility regression coefficient 3°2°¢ was to capture the effect of permanent reductions in contact patterns in

upswing

the early phase of the pandemic. The purpose of the upswing regression coefficients f3,,;

was to capture

longer-term effects after the initial reduction in contact patterns during the early phase of the pandemic. The
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longer-term effects were allowed to differ in time and across the United States. Within each location, the effect

of the age-specific mobility trends was assumed to be identical.

To illustrate the effect of the regression coefficients, consider the case that 53¢ = gUP""8 — () |n this case,

Nm,t,a = 1 and the contact intensities on day ¢ are the same as at baseline after the dip date. If instead 5;?,?5‘3" =

ﬁupswing

i = 1, the contact intensities on day ¢ from index persons scale with the observed mobility trend X, ¢ 4.

Finally, if 382¢¢ = 1 and 3“P*"I"¢ — (), the contact intensities on day ¢ from index persons scale with the derived

eased mobility trend X ¢5¢¢ after the dip date.

m,t,a

$3.2.4 Time-varying contact intensities from and to children aged 0-14

To avoid extrapolating the mobility trends to children aged 0-14, we used data from two contact surveys conducted
after school/nursery closures in response to accelerating COVID-19 epidemics in the UK and China [63, 51)]. Fig-
ure §27 compares the estimated contact intensities from one child aged 0-14 using the contact surveys in Wuhan
and Shanghai before and during lockdown. Figure 26 compares the estimated contact intensities to individuals
aged 0-14. We plot the point estimates from the original report before lockdown to those during lockdown [51]
(top row) and the ratio of the contact intensities during lockdown versus the corresponding contact intensities
before lockdown (bottom row). During lockdown, the estimated, average number of daily peer-to-peer contacts
from one child aged 0-14 to children in the same age group was 0.03, corresponding to a contact intensity ratio
of 0.02 across both cities. The total number of contacts from one child aged 0-14 during the outbreak was 2.07,
corresponding to a contact intensity ratio of 0.14 across both cities. The average number of contacts from one
individual randomly chosen in the population to individuals in 0 — 14 was 0.23 during lockdown, associated with
a contact intensity ration of 0.29. The contact survey of Jarvis and colleagues [63] in the UK included individuals
aged 18+, but interviewed individuals were also asked to report contacts to children and teenagers aged 0-17.
During lockdown, the estimated, average number of daily peer-to-peer contacts from one individual older than

18 to children aged 0-17 was 0.78, corresponding to a contact intensity ratio of 0.25.

In the United States, school closures have been ordered at least to one level (elementary school, middle / junior
high school, or high school) in 13 states and the District of Columbia, and to all levels in the remaining 38 states [64]].
In addition, 17 states have also ordered the closure of child-care centres, with the option to provide care only for
children of parents working in essential areas, and 11 states either limited the number of children that can be cared
for in child-care centres or encouraged families to stay at home with their children [65]. Figure 52§ illustrates the
timelines of school closure dates across the United States. In the model, we accounted for changes in contact

patterns as a result of school and/or day care closures as follows. First, we obtained the average daily contact
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intensities involving children aged 0-14 during lockdown in Wuhan and Shanghai, and denote these by

caCfl)lVID70714 (522)

where either a € {[0 — 4], [5 — 9], [10 — 14]} and @’ is one of the 5-year age bands of the infection-and-contact
model, or a is one of the 5-year age bands and o’ € {[0—4], [5—9], [10— 14]}. Next, we denoted the time indices
corresponding to school closures ordered or recommended in location m by tﬁf:‘“"c"’se, and set the time-varying

contact intensities that involve children aged 0-14 as
cm a.a! ift < tschool—close
C Jta,a = COVID—0—14 : mh I-cl (523)
m a,a { Cma/ |ft Z t:fl 0o0l-close
where C,, o is the baseline pre-COVID-19 contact matrix described in Section £3.2.2. School re-opening times

fell in the forecast period, the subsequent changes on the contact intensities (§23) during this period are described

in Section §3.7.
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Figure S26: Estimated changes in contact intensities to children aged 0-14 during lockdown, Shanghai and
Wuhan, China. Data from [51]. (A) Average number of contacts from one individual in 5-year age bands to children

aged 0-14 before (blue) and during (orange) lockdown. (B) Contact intensity ratio (grey).
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Figure S27: Estimated changes in contact intensities from one child aged 0 — 14 during lockdown, Shanghai and
Wuhan, China. Data from [51]. (A) Average number of contacts from one individual in 0 — 14 to individuals in

5-year age bands before (blue) and during (orange) lockdown. (B) Contact intensity ratio (grey).
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Figure S28: School closure status in the 50 U.S states and the District of Columbia. Data were retrieved from [64]

for all U.S locations and were available until August 31, 2020.

DOI: https://doi.org/10.

25561/82551 Page 39


https://doi.org/10.25561/82551

17 September 2020 Imperial College COVID-19 Response Team

S3.3 Likelihood

The self-renewal model is fitted to overall death counts and/or age-specific death counts for each location m.
To establish a link between the data and the expected number of cases ¢, ;. (§14), we model the probability
H,,q(t — s) that a person in age band a dies from SARS-CoV-2 infection before time ¢ — s after infection at time
s in location (state or metropolitan area) m. We decompose the probability into the infection fatality ratio in
location m and age band a, 7, 4, and the infection-to-death distribution / that describes when a death occurs
conditional on non-survival. We decompose H,,,(t — s) in this manner because estimates of both terms are

available from the literature [66, 54]. Our model is
t—s
Hp,.(t—s)= Wma/ h(u)du, (S24)
0

where t — s is in continuous time and % integrates to 1. Using (§24)), we can express the probability that a person
in location m and age band a dies on day s after SARS-CoV-2 infection as

s+0.5 5+0.5
honsa = / Tmah(uw)du = Tl'ma/ h(u)du Vs=2,3,..., (525)
s—0.5 s—0.5

1.5

o M(u)dufor s = 1. Using (525), the expected number of COVID-19 deaths on day ¢ in age

and hm,la = Tma

band a in location m is

t—1
dmta = Z Cmsalim (t—s) a» (S26)
s=1

where ¢;,5, is the expected number of new cases on day s in age band a in location m, (§14).

We link the expected number of death under the self-renewal model to the observed number deaths through
an over-dispersed count model. For each location m, the data consist of daily, overall reported COVID-19 related
deaths regardless of age until day ¢28***", For each location, time was re-scaled to 30 days prior to the first day
when the cumulative number of deaths was 10 or larger. We denote the overall number of deaths on day t in
location m by y,,,; for t < 28 From day ¢38°%" onwards, COVID-19 related deaths are reported in location-
specific age bands b € B,,,. We denote the number of deaths on day ¢ in location m in age band b € B,,, by Y1

for t > ¢S To match the location-specific death data, we aggregate the expected number of deaths under

the self-renewal model to

Ayt = Y dimpa Vit < £355500 (S27)
acA

dmtb = Z dmta Vt Z tf,gLEEStart,Vb S Bm (528)
acb
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The log likelihood then consists of three parts,

E(vw):Z[ > logNegBin(ym:|dmi, ¢)+ (529a)
mo T gstart < g gRgesart

age-start age-start

D> > logNegBin( Y ymss| D dms d)+ (529b)
s=1 s=1

t:tiie»start beB,,

> Y logNegBin (Ymin|dmin, <z>)], (529¢)

tigbe»starl <t< tswlld beB,,

where 52" is the first day on which at least 10 cumulated deaths were reported in location m, and tf,’zd corresponds

to the last day with overall death, or death by age data, see Table F10.

$3.4 Inputs and prior distributions on model parameters

The COVID-19 age-specific transmission model has the following inputs, which we consider fixed, and model pa-
rameters, which we consider unknown and estimate (see Table §9). The total number of estimated parameters in
the modelis 30 + Ny + 7 x M, where M is the number of locations and Ny is the number of bi-weekly intervals,

which for the central analysis amounted to 298 estimated parameters.

$3.4.1 Infection dynamics

Initial number of infections. For each location, the number of SARS-CoV-2 infections in the first 6 days of the

observation period among individuals aged 20-54 are given the prior distribution
108 ¢ ¢, [20—54) ~ N(4.5,0.62%), t=1,...,6 (S30)

Recall that the observation period starts 30 days prior to the first day when the cumulative number of deaths
in location m was 10 or larger. A priori we thus expect 90 infections to have occurred in the first 6 days among

individuals aged 20-54 years. The new infections are then equally distributed across the corresponding age bands,

Cmtia = { T et (531)

otherwise,
where Ay = {[20 — 24],[25 — 59], [30 — 34], [35 — 39], [40 — 44], [45 — 49],[50 — 54|} and t = 1,...,6. This

prior specification is similar to the base model [54]].
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Dates with Dates with
Location Number of age groups
overall data death by age data

Alabama March 29, 2020 - May 02,2020  May 03, 2020 - August 23, 2020 5
Alaska - - -
Arizona March 27,2020 - May 12,2020 May 13, 2020 - August 23, 2020 5
Arkansas - - -
California March 17,2020 - May 12,2020 May 13, 2020 - August 23, 2020 4
Colorado March 25, 2020 - March 25,2020 March 26, 2020 - August 23, 2020 9
Connecticut March 23, 2020 - April 04, 2020  April 05, 2020 - August 23, 2020 9
Delaware March 31,2020 - May 11,2020 May 12, 2020 - August 23, 2020 6
District of Columbia | April 02, 2020 - April 12,2020  April 13, 2020 - August 23, 2020 8
Florida March 20, 2020 - March 26, 2020 March 27, 2020 - August 23, 2020 10
Georgia March 19, 2020 - May 05,2020  May 06, 2020 - August 23, 2020 18
Hawaii - - -
Idaho April 04, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 8
Illinois March 23,2020 - May 13,2020 May 14, 2020 - August 23, 2020 8
Indiana March 24,2020 - May 12,2020 May 13, 2020 - August 23, 2020 8
lowa April 02, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 5
Kansas - - -
Kentucky March 30, 2020 - May 12,2020 May 13, 2020 - August 23, 2020 9
Louisiana March 19, 2020 - May 11,2020 May 12, 2020 - August 23, 2020 7
Maine - - -
Maryland March 29, 2020 - May 13,2020 May 14, 2020 - August 23, 2020 9
Massachusetts March 24, 2020 - April 19, 2020  April 20, 2020 - August 23, 2020 8
Michigan March 23, 2020 - March 23,2020 March 24, 2020 - August 23, 2020 8
Minnesota - - -
Mississippi March 28, 2020 - April 26,2020  April 27, 2020 - August 23, 2020 8
Missouri March 28, 2020 - May 12,2020  May 13, 2020 - August 23, 2020 8
Montana - - -
Nebraska - - -
Nevada March 26, 2020 - June 06, 2020  June 07, 2020 - August 23, 2020 8
New Hampshire April 08, 2020 - June 06, 2020 June 07, 2020 - August 23, 2020 9
New Jersey March 20, 2020 - May 24,2020  May 25, 2020 - August 23, 2020 7
New Mexico April 03, 2020 - April 03,2020  April 04, 2020 - August 23, 2020 8
New York - - -
New York City March 16, 2020 - June 30,2020  July 01, 2020 - August 23, 2020 5
North Carolina March 31, 2020 - May 19, 2020  May 20, 2020 - August 23, 2020 6
North Dakota - - -
Ohio - - -
Oklahoma March 28, 2020 - May 12,2020 May 13, 2020 - August 23, 2020 6
Oregon March 25, 2020 - June 04,2020  June 05, 2020 - August 23, 2020 9
Pennsylvania March 25, 2020 - June 06, 2020  June 07, 2020 - August 23, 2020 8
Rhode Island April 01, 2020 - May 31, 2020 June 01, 2020 - August 23, 2020 9
South Carolina March 27,2020 - May 13,2020 May 14, 2020 - August 23, 2020 9
South Dakota - - -
Tennessee March 30, 2020 - April 08, 2020  April 09, 2020 - August 23, 2020 9
Texas March 24, 2020 - July 27, 2020 July 28, 2020 - August 23, 2020 11
Utah April 06, 2020 - June 16, 2020 June 17, 2020 - August 23, 2020 6
Vermont - - -
Virginia March 26, 2020 - April 20,2020  April 21, 2020 - August 23, 2020 9
Washington March 04, 2020 - June 07,2020  June 08, 2020 - August 23, 2020 5
West Virginia - - -
Wisconsin March 26, 2020 - March 26, 2020 March 27, 2020 - August 23, 2020 9
Wyoming - -

Table S10: Dates with overall and death by age data included in the likelihood. Our analysis include 37 locations

with death by age.
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Infection parameters. The infection parameters described in (§11)) comprise the baseline infection parameter

in location m, po,,, (real-valued), as well as relative susceptibility (S) parameters p° (vector-valued of length A).

To place a prior density on pyg ,,, we consider prior estimates on the basic reproduction number [50], and specify

the following prior distribution on the basic reproduction number Ry ,, in location m,

Rom ~ N (3.28, k), (S32a)

K ~ Nig o) (0,0.5). (S32b)

where /\/'[a,b) denotes a truncated normal distribution between a and b. A common prior standard deviation is
chosen to allow information to be shared between locations. This specification follows the base model [54]. To

obtain pg ., we re-scale Ry ,,, by the average number of contacts of one person in location m at baseline,

PO,m = RO,m/C’m (S33a)

Con = Dma »_Co o, (S33b)
a a’

where C'%% is the baseline weekday contact matrix defined in and py, 4 is the proportion of the population

of location m in age band a.

To place prior densities on the relative susceptibility parameters, we used available data from contact tracing and
testing in mainland China [51]. Based on the available data, we considered relative susceptibility parameters for

the age bands [0 — 14], [15 — 64] and [65+], and specified the prior densities

log pify 14 ~ N (—1.0702,0.2170%) (S34a)

log pigs1; ~ N(0.3828,0.1638%), (S34b)

were the hyperparameters were obtained by fitting a lognormal distribution to the reported 95% confidence in-

tervals in [51] with the lognorm R package, version 0.1.6 [67].

The log susceptibility parameters for age band [15 — 64] were set to 0, so that p? isinterpreted relative to infection
dynamics from/to individuals in age band [15 — 64]. Considering the 18 age bands of the COVID-19 transmission
model, the age-specific relative susceptibility parameters were set to

logpiy 14 ifa€[0—14]

log p5 = 4 logpls ¢y ifa€[15—64] (535)
log pigsy  ifa € [65+].
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Discretised generation time distribution. The generation time distribution (§14)) was kept fixed. Using estimates

of [52], we specified the continuous-time version
g7 (5) = Gamma(6.5,0.62). (S36)
Equation (§36) was then discretised to units of days,

s+0.5
g(s) :/ 9T (u)du Vs=2,3,... (537)

and g(1) = f01'5 g°T (u) du for s = 1. This input specification is the same as in the base model [54].

$3.4.2 Time changing contact patterns

Baseline age-specific contact matrices The pre-pandemic contact intensity matrices were constructed using 57

and are illustrated in Figures 521524,

Mobility trend predictors. Changes in contact intensities were modelled through a regression on decomposed,
age- and location-specific mobility trends. The mobility trend data used in this study are described in Section F1.2.
The decomposition into baseline mobility trends X22¢  eased mobility trends X3¢ and upswing multipliers

m,t,a’ m,t,a

X UPSWINg 5y day ¢ in location m and age band a is defined in (§20). The mobility predictors were kept fixed.

m,t,a

Mobility trend regression coefficients. Equations (§15) and (§27)) describe our model of changing contact in-
tensities, which depends on the regression coefficients 32254 and 3“P$"I"¢ We model the effect of the mobility

mt

trends prior to the rebound time (§6) through a spatial random effect,

Brzed ~ N (855, 07 eq)
jgeased N(0,1) (S38)
Ceased ~ Exponential(5).

The effect of the mobility trends after the rebound time (§8) was allowed to vary in space and time to capture the

upswing
mt

observed heterogeneity in the mobility and death data. We modelled 8 through the factorisation

B;J’s);wing _ ﬂ:rs)swing % B;Jpswing (539)
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where the spatial component was modelled as a random effect,

Brre ~ N (B, 08 cving)
3UPsWIne  A7(0, 1) (S40)
Oupswing ~ Exponential(10),

and the time component was modelled as a bi-weekly AR(1) process centered at zero,

ByPvne = Ele(t)/2]

£1 ~ Nig.00)(0,0.025), o)

Ep ~ /\/[o,oo)(fv—hffa) forv > 1,

0. ~ Exponential(10),

and ¢(t) is a function that maps the time indices in location m to calendar weeks.

S$3.4.3 Likelihood

Location and age-specific infection fatality ratio. The infection fatality ratio in location m and age band a is
decomposed into

Tm,a = eXp(|08 7o + log 6’rn,a)7 (S42)

where log 7, are age-specific fixed effects, and log d,,, , are random effects for each location on a subset of age
classes. To specify prior distributions on the age-specific fixed effects, we considered data from the meta-analysis
of Levin and colleagues [68], and then adapted the statistical analysis to better reflect increasing uncertainty in
infection fatality ratio estimates for young age groups. For the meta-analysis, we included data from Belgium,
Sweden, and Geneva as in the original analysis [68], but excluded Spain due to difficulties in retrieving count data
from the original sources cited in [68]. In addition, we included in the meta-analysis data from Iceland, New
Zealand, and Korea, which were previously used for validation purposes [68]. Tables §17 and F12 present the

sero-prevalence studies and comprehensive tracing programs data used in our re-analysis. Our meta-analysis is

IFR
s,a

based on the actual death counts dgflR and estimated ranges for the number of infected individuals ¢ reported
across 6 large scale studies s and various age bands, which are indexed in terms of the median age a of reported
age bands as in [68]. We modelled the count data with a Beta-Binomial observation model, which allowed us to
include observations with no reported deaths, and to account for overdispersion in the data. We used a logit link

function for simplicity; results using a log link function were very similar. We allowed for non-linear departures
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from linear, age-specific trends using a zero-mean Gaussian process model. The full model is

AR~ Beta-BinomiaI(cIFR Mo, (1 —pLFV'fl)fI))

s,a’ ps,a

(543)
logit i = B4~ + B xa + fa + vk,

with prior densities
TR~ N(0,20)
1~ N(0,1)
Vi ~ N(0, 0era)

Owmeta ~ Half-Cauchy(0, 1) (S44)

f~ GP(0, K(a®, p°"))

a®f ~ N(0,2)

p® ~ Inverse-Gamma(11, 400)

1/® ~ Half-Cauchy(0, 1),
where the Gaussian process covariance function is specified by the exponential quadratic kernel K with marginal
variance parameter o®” and length scale p®F. We sought to capture long-range non-linear age trends through
the GP, and for this reason specified for the length scale a prior density with 1% and 99% quantiles of 20 and 84
years. The model was fitted with CmdStan release 2.23.0 (22 April 2020), using 3 adaptive Hamiltonian Monte
Carlo Sampler [69] with 10,000 iterations each, of which the first 5,000 iterations are considered as a burn-in.
The chains mixed and converged, the minimum and maximum effective sample sizes were respectively 1,961 and
34,270. Moreover, the Rhat statistics range was 0.9998 and 1.001. Figure §29 shows the posterior predictive
distribution of the infection fatality ratio on the log scale, along with the data used in the meta-analysis. We
estimate substantial uncertainty in predicted infection fatality ratios among individuals below age 40, and this
uncertainty allows the model to explore the possibility of large case numbers among individuals below age 40.
We then fitted log-normal distributions to the numerical estimates of the 95% credible intervals associated with
the posterior predictive infection fatality ratios using the lognorm R package, version 0.1.6 [67], and specified the

prior distribution on the log infection fatality ratio for each age band used in the model through
log 7y ~ N (pq, 02), (545)

where i, and o, for the 18 increasing age bands in this study are reported in Table B13. Figure §29b compares

our prior distribution (§45) to that obtained from the meta-analysis of Levin and colleagues [B8].

The prior (§42)) further included a location-specific random effect for adults aged [20 — 49], which we denote

by 0., [20—49], @ location-specific random effect for adults aged [50 — 69], which we denote by Om,[50—69], and a
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location-specific random effect for individuals aged 70 or older, which we denote by d,, [704)- The corresponding

prior distributions were

10g 01, [20—40] ~ N (0, 0759 _4g)) (S46a)
10g 01, (50—60] ~ N (0, 0750 _g9]); (S46b)
O20—49] O[50—69] ~ Exponential(10), (S46c)
log 6,1,,170+] ~ Exponential( A7), (s46d)
Arro4] ~ Exponential(0.05). (S46e)

The parameter log 5m,[70+] was restricted to be positive in order reduce collinearity between model parameters.

(Sero-)prevalence
Location Dates Age bands Population size estimates (in %) (mean and Deaths Source
95% confidence interval)
0—24 3,228,894 6.00 [4.20, 8.60] 2
25 —44 2,956, 684 5.90 [4.20, 8.30] 30
) . 45 — 64 3,080, 528 6.20 [4.70, 8.30] 409
Belgium March - April, 2020 / May 9, 2020 65 — 74 1,147,009 410 [2.30,7.20] 1,061 [70]
75 — 84 690, 685 7.00 [4.20, 11.70] 2,144
85+ 326, 659 13.20 [8.90, 19.60] 5,087
18— 44  18,1904,73 7.13[6.69, 7.64] 524 (74
45 —-64 13,449,179 6.17 [5.77,6.67] 4,657 [72]
England | June 20 -July 13,2020/ July 17, 2020 65 — 74 4,552,283 3.20 [2.80, 3.60] 7,105  [73)f
75+ 3,704,429 3.30 [2.90, 3.80] 36, 341
5-9 26, 466 4.53[1.51,9.07] 0
10 —-19 53,180 11.47(7.33,16.55] 0
Geneva May 6, 2020 / June 1, 2020 20 —49 219,440 13.12 9.75,17.00] 2 [74]
50 — 64 98,528 10.45 [7.31,14.11] 16
65+ 83,574 6.82[3.83,10.53] 268
0-9 4,283,800 3.73[2.28,6.04] 5
10—19 4,954,600 4.01 [3.09, 5.19] 6
20 —29 4,883,200 5.74[4.66,6.97] 35
30 -39 5,990, 500 4.95[4.11,5.95] 7
Spain | March 20 - June 22,2020 / July 15,2020 40 —49 7,794,500 5.33 [4.59,6.19] 295 [75]
50 — 59 7,057,300 5.22[4.49,6.07] 1,023
60—69 5,401,600 4.95 [4.12,5.95] 2,653
70—179 3,921,800 4.66 [3.68, 5.87] 6,131
80+ 2,599, 100 4.84 [3.48,6.69] 9,003
May 18 - May 24, 2020 / 0—-19 2,297,477 5.30 [3.31,7.93] 1 [7a)t
Sweden 20— 64 5,711,699 7.60 [5.14,10.81] 604  [771°
June 1-June7,2020 65+ 2,008, 354 3.89 [2.06, 6.52] 4,433 78]

Table S11: Summary of the sero-prevalence studies used to formulate the infection fatality rate prior. Dates
presented are the seroprevalence study date / deaths data date. T: England and Sweden’s references are, in

order, for the population size, seroprevalence estimates and mortality counts.
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Prevalence
Location Dates Age bands Population size estimates (in %) (mean and Deaths Source
95% confidence interval)
0—-29 135,576 0.41[0.30, 0.50] 0
30 — 39 46,871 1.10[0.80, 1.60] 1
40 — 49 42,966 1.50 [1.10, 2.00] 0
Iceland Feb1-Jun15 90 —59 42,111 0.80 [0.50,1.30] 0 [68]
60 — 69 37,536 0.50 [0.30, 1.00] 2
70 —179 23,415 0.30[0.20, 1.30] 3
80+ 12,775 0.20 [0.10, 2.50] 4
0—29 15,623, 365 0.06 [0.03,0.08] 0
30 — 39 7,079,839 0.04 [0.02,0.07] 2
40 — 49 8,218,844 0.04 [0.02, 0.06] 3
Korea Feb 1-May 17 50 — 59 8,476,699 0.06 [0.03, 0.08] 15 [68]
60 — 69 6,453,706 0.05 [0.03, 0.08] 41
70 —-179 3,560, 646 0.05[0.03,0.07] 84
80+ 1,856,084 0.06 [0.03, 0.09] 144
0—29 1,911,472 0.06 [0.03, 0.08] 0
30 — 39 619,066 0.08 [0.04,0.12] 0
40 — 49 591,874 0.07[0.04,0.11] 0
New Zealand | Feb1-Jul9 50 —59 628, 691 0.08 [0.04,0.12] 0 (68l
60 — 69 522,312 0.07[0.04, 0.10] 3
70— 179 361,832 0.04 [0.02,0.07] 7
80+ 186, 985 0.04 [0.02, 0.06] 12

Table S12: Summary of the countries with a comprehensive tracing program used to formulate the infection
fatality ratio prior. Dates presented are the period of cases and deaths observation. In countries with a com-
prehensive tracing program, the number of cases detected is considered representative of the actual number of

cases.
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Figure S29: Predicted infection fatality ratios. (a) Comparison of the posterior predictive infection fatality ratios
against the data used to fit model (§43). Shown are the posterior predictive median (line), 95% posterior predictive
credible interval, and ratios of observed deaths over expected number of cases on the log scale (points). (b)
Comparison of the posterior predictive infection fatality ratios with the prediction intervals from the meta-analysis

of Levin and colleagues [68] (provided in their Supplementary Material).

The age-specific random effects log 6,,, o, for each of the 18 age bands in this study were then set to

log 5m,[20749] ifa € [20 — 49]
|0g 61’77,,[50—69] ifa € [50 — 69]
|0g 5m,[70+] ifa € [70"‘]

0 otherwise.

|0g 5m,a = (547)

Infection-to-death distribution. The infection-to-death distribution h in (§24) was kept fixed. Following [79,
66], we first specified the infection-to-onset-of-symptoms distribution and the onset-to-death, and modelled the

infection-to-death distribution as the sum of both components through
h(s) = Gamma(s;5.1,0.86) + Gamma(s; 17.8,0.45), (548)

where s is in continuous time. This input specification is the same as in the base model [80].
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[0—4] [5—9] [10 — 14] [15—19]  [20—24]  [25—29]
lto | —12.4045236 —11.8276362 —11.2128209 —10.5612676 —9.9547808 —9.3553661
oo | 1.2848842 11614624  1.017873  0.8757987 0.7785512  0.6912288

[30 — 34] [35 — 39 [40 — 44] [45—49]  [50—54]  [55 — 59
[ia| —8.7522828  —8.15568 —7.5638957 —6.9594171 —6.3526927 —5.7362489
oa| 0.6404053  0.6055523  0.582907  0.5704648 0.5636325  0.562268
[60 — 64] [65 — 69] [70 — 74] [75—79] [80 — 84] [85-+]

le | —95.1077053 —4.4738832  —3.848234  —3.229631 —2.6304859 —1.3551168
Oa 0.5588437 0.5518728 0.5418635 0.5229684  0.4969032 0.3616957

Table S13: Hyperparameters of the prior density on age-specific infection fatality ratios, equation (545).

Overdispersion parameter. The prior distribution on the overdispersion parameter ¢ in the Negative Binomial

observation model (§29) was given by the prior density

¢ ~ No,00)(0,5). (549)

$3.5 Computational inference

The Bayesian hierarchical model was fit with CmdStan release 2.23.0 (22 April 2020), using an adaptive Hamilto-
nian Monte Carlo (HMC) sampler [69]. 8 HMC chains were run in parallel for 2, 000 iterations, of which the first
1, 500 iterations were specified as warm-up. Calculations for each HMC chain were distributed over 1 processor
per U.S location (state or metropolitan area) with CmdStan’s reduce_sum functionality. Posterior convergence
was assessed using the Rhat statistics and by diagnosing divergent transitions of the sampler. There are 4,000
iterations after burn-in across 8 chains, and 10 parameters with the lowest effective sample sizes were assessed.
Those effective sample sizes of are from 589 to 781, and Rhats are from 1.0034 to 1.0159. There were 4092 diver-
gent transitions, and that the average posterior step size was around 0.004. The pair plot of parameters for New

York City is in Figure B30.
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Figure S30: Pair plots of the joint posterior distribution of the model parameters for New York City.
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$3.6 Generated quantities

Age stratification for reporting purposes. In the manuscript results are reported using the following 8 age bands
deD= {[0 — 9], [10 — 19], [20 — 34], [35 — 49, [50 — 64], [65 — 79], [80+]}. (550)

Posterior samples were recorded in the 18 age bands used in the model ([0 — 4], [5 — 9], ..., [85+]) and then

aggregated to the stratification D using

C*
m,t,a
Rm,t,d = * Rm,t,av
red 2 ked Otk
Cm,t,d = § Cm,t,a> (551)
acd
dm,t,d = § dm,t,a7
acd
where c;*mt,a is the number of infectious individuals in location m and time ¢ that is in age band a defined in (§54),

R t.q is defined in (812), ¢y, 1,4 is defined in (§14) and d,, ¢, is defined in (§§).

Estimated cumulated COVID-19 attack rates by age and over time. We calculate the percentage of the popula-
tion in m and in age band d that has been infected up to day ¢ through

t
2 5=1 Cm,s,d

s52
Noa (552)

Am,t,d =

where N,, q is the number of individuals in location m and age band d, and ¢, s 4 is defined in (§53)). We also
refer to (852) as the age-specific cumulative attack rate. Similarly, we calculate the percentage of the population

in m that has been infected up to day ¢ through

Edztf Cm,s,d de
Am,t = Sdes=l AT : Am.t,da (553)
Zd NmA,d Xd: Nm i

where N, is the number of individuals in location m. We also refer to (§53) as the cumulative attack rate.

Estimated number of infectious individuals by age and over time. The effective number of infectious individuals
c* in location m and age band d on day t is calculated by weighing how infectious a previously infected individual

is on day ¢,

t—1
Chtd =D Cmsd 9(t —5), (554)
s=1
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where g appears in (§14). Similarly, the effective number of infectious individuals ¢* in location m on day ¢ is

calculated by

t—1 t—1
Cont = Z Z Cm,s,d gt —8) = Z Cm,s g(t — 5). (S55)
d s=1 s=1

Estimated time-varying reproduction number of COVID-19 over time. The overall time-varying reproduction
number on day t in location m is given by

Rt = Cmt/Ch s (S56)

where c,, ; is the number of new cases on day ¢ in location m, and c},, , is the number of infectious individuals on

day t in location m [81]. Equation (§58) can be re-arranged to

Rm,t = Z c;kn,t,a/c:‘n,tRmvtvav (557)

a

where R,, + , is defined in (§12).

Estimated age-specific SARS-CoV-2 transmission flows. Following on from Equation (§14), the transmission

flows from age group a to age group a’ at time t in location m are,

t—1
Fm,t,a,a’ = Sm,t,a’ Pa’ cm,t,a,a’ <Z Cm,s,a g(t - S)) ) (558)

s=1
where s, 1 o is defined in (§13), pa,q is defined in (81T)), and Cy, 1 4.4/ is defined in (B15). In terms of the age

bands reported in the main text, the transmission flows by aggregated age groups are

Fotaa = Z Finta,a- (S59)
a€d,a’€d’

Estimated contribution of age groups to SARS-CoV-2 transmission. Following on from Equation (558), the age-

specific contribution of infections from age band a in location m on day t is

Sm7t7a = (ZFm,t,a,a’>/(Zszﬁt,a,a’>~ (560)

The age-specific contribution of infections are proportions, such that Za Sm.t,e = 1foralla. Interms of the age
bands reported in the main text, the aggregated contribution of infections in age band d in location m on day ¢

are equal to

Sm,t,d = (Z Fm,t,d,d’) / ( Z Z Fm,t,d,d’) . (561)
d’ d d
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National averages. Several quantities are reported at the national level by age,

C*
Ria=Y <" Ryia, (562)
ooy > Clt,d
Ct,d = Z Cm,t,d> (563)
m
diqa = Z A t,ds (S64)
m

where ¢ , , is the number of infectious individuals at time ¢ in location m and age band d, defined in (§54)), and
Rynt.dr Cmot,a and dp, 1 o are defined in (853)). Finally, for reporting at the national level regardless of age, we

calculated

m t,d
== Bt (S65)
ZZ ZleeDcltk

m deD

e = Z Ct.ds (S66)
d

di = dia. (S67)
d

S3.7 Forecasts

Forecast period. School re-opening scenarios were generated for 90 days, for the time period August 24, 2020

to November 24, 2020.

Contact and transmission intensities during school re-opening scenarios. In the school re-opening scenarios,
children aged 0-11 were modelled to resume their typical contact intensities. As the contact-and-infection model
is specified in terms of the 5-year age bands (510), the contact intensities for children aged 10-14 were modelled

through a mixture approach,

C aal ift < t;c@hool»close
c o can/VID 0—14 ift e [t;%hool-close’ ti;hool-reopen _ 1] (568)
ot Conaal if ¢t > gschookreopen gnd g < 10 ora’ < 10
2Cpna,0 + 2CTQVIPTOTI gt > gichookreopen gnd g = 10 — 14 ora/ = 10 — 14

where the school re-opening date #55"°0ITe%Pen w35 set to August 24, 2020 in all locations, C,, 4 o’ is the baseline

pre-COVID-19 contact matrix described in Section 7, and c¢OVIP=0-14 s the average contact matrix during

a,a’

lockdown of [57] described in Section §3.2.4, and a or ¢’ are one of [0 — 4], [5 — 9], [10 — 14].
We further considered that due to other preventative interventions, transmissions rates involving children aged
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0-11 are modulated by a factor 3%%!, and we considered school re-opening scenarios using the values
B0 = 0.2,0.33,0.5, 1.0, (S69)

which were motivated by the effect sizes reported in [82]. Due to the mixture approach in (§6§), we incorporated
the prevention effect parameter 37011 on the contact intensities rather than the transmission intensities in the

renewal equation (§14),

C , ift < tschool—close
m,a,a
caC’S/VID70714 ift e [t%hool-close’ ti;hool»reopen _ 1]
Contaa =13 BONC 00 if ¢t > gschoolreoren gndg ¢ < 10 or o’ < 10 (S70)
%ch—O»llcmﬂ’a/ + %C§3V1D70714 ift > tirclhool-reopen anda = 10 — 14,
ora’=10-14

where a or o’ are one of [0 — 4], [5 — 9], [10 — 14].

Contact intensities among individuals aged 15+ were modelled as before based on the mobility trends in equa-
tions (F15) and (§27) where the required mobility trend predictors were imputed, and for weekdays set to the

average over the last 5 weekdays, and for weekends set to the average over the last 4 weekend days.

Contact and transmission intensities during school re-opening scenarios. In the school closure scenarios, con-
tact intensities remained unchanged, and corresponded to (570) with ¢5cheoeoPen — ~; Contact intensities among
individuals aged 15+ were modelled as before based on the mobility trends in equations (§15) and (523)) where the
required mobility trend predictors were imputed, and for weekdays set to the average over the last 5 weekdays,

and for weekends set to the average over the last 4 weekend days.

Age stratification for school re-opening forecasting scenarios. To investigate the impact of re-opening day care,

kindergartens, and elementary schools, we used the age bands
deD= {[0 —11], [12 — 19], [20 — 34],[35 — 49], [50 — 64], [65 — 79), [80+]}. (S71)

and then aggregated to the stratification D analogously to (§57). We introduce the superscript « to denote the
various scenarios, e.g. re-opening of kindergartens and elementary schools, or continued closure of kindergartens
and elementary schools. Then, the time-varying reproduction numbers in the forecast period/scenarios were

calculated through

P jo—a] RE, 4 10— a1 FPm.5—9) RS, 1 5—0)F 2Pm,[10—14] RE, 4] i 3
,[0—4] ,t,[0—4] [5-9] ,t,[5 29] [10—14] ,t,[10—14] ifd = [07 11]
5 Pm,[0—4] FPm,[5-9] T 5 Pm,[10-14]
x xT
an o= Ep7rl,[10—14]ijn,t‘[loflz;]+pm,,[15—19]Rm,,t,[15719] ifd = [12 — 19] (572)
obs 5Pm,[10—14] TPm,[15-19]

_ Pmya ;
Yoed sl Ry, o ifd > 19,
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and the number of daily new cases through

cmt[O gt oo T3 cmt[lO 14]'fd [0 —11]
x _ 3
Crt,d — 5 m,t,[10—14] + Gt [15-19] ifd=[12 —19] (573)

Zaed ot ifd > 19,

and the number of daily deaths through

(jmt [0—4] +dy, ., (5-o] T 5dmt [10—14] ifd=[0—11]
dy o i= 5y, ¢ 10-14] +~dm,t7 (15—19] if d = [12 — 19] (S74)
Zaeddfn ta ifd > 19,

and the contribution of age group d to onward spread on day t in location m and scenario x through

Sx t,[0—9] + 1OSmt [10—19] ifd = [0 - 11]
S:z,t,i = 180 Sm £,[10—19] if d = [12 —19] (575)
Sm}t’d if d > 19.

Predicted excess infections and deaths, percent increases in infections and deaths. Based on (§72-575), the

excess number of cases in the re-opening scenarios versus the continued closure scenario was calculated as

excess reopen close
eSS — n_ . S76
m,t,d m,t,d m,t,d’ ( )

and the percent increase in cases was calculated as

pc-increase __ _reopen ; close 1 S77
m,t,d m,t,d’ m,t,d . ( )

Predicted excess deaths and percent increases in deaths were calculated analogously. Predicted percent increase

in the time varying reproduction number were also calculated analogously.
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S4 Supplementary Text: Comparison of model outputs to estimated contact

intensities during the pandemic

The SARS-CoV-2 transmission model presented in Section makes detailed predictions on the time evolution
of age-specific contact patterns during the pandemic. As a form of external model validation, we here compare

the model predictions against data from contact survey studies.

In the United States, the Berkeley Interpersonal Contact Study (BICS) was designed to measure the effects of social
distancing on contact patterns during the pandemic, and began in spring 2020 [83]. Their study included adults
aged 18+ and wave 0 was conducted between March 22 to April 08, 2020. In this wave, approximately half the
study participants were from five cities (New York, San Francisco Bay Area, Atlanta, Phoenix, Boston) with the rest
from around the rest of the US. In their initial analyses, the study authors found that individuals had a mean of
2.7 conversational contacts with similar IQR when compared to the study of Jarvis et al. [63] in the UK: 85% of
respondents reported four or fewer contacts. Despite wide confidence intervals, these figures indicate substantial
reductions in the overall number of contacts in the early phase of the pandemic, and early after lockdown or stay

at home orders were issued.

We compared the estimates from the two contact surveys to the average number of contacts at the midpoint
of the wave 0 period of the BICS study, March 28, 2020 (Table £14)). To match the study sample of the BICS
study, we report estimates for two metropolitan areas included in the model analysis (New York City and District
of Columbia), and an overall estimate for the United States obtained by averaging across all states evaluated,
New York City, and the District of Columbia. Overall, the COVID-19 contact and infection model estimates similar
strong reductions in the number of daily contacts, with a probability of one that overall, the average number of

daily contacts by individuals of all ages was at most four.

Number of daily contacts [95% credible intervals] Posterior probability of at most 4 daily contacts
District of Columbia 2.56 [1.8-3.75] 100%
New York City 2.75[2.13 - 3.59] 100%
United States 2.75[2.56 - 2.94] 100%

Table S14: Estimated number of contacts on March 28, 2020 (midpoint of BICS waveO study). Posterior median
and 95% credible intervals in brackets. We include a weighted average across the United States and two cities

which were included in the BICS study.

We also compared the age breakdown of daily number of conversational contacts from the BICS study with our

model estimates for New York City, District of Columbia and a national average. Figure indicates good agree-
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Figure S31: Estimated daily number of contacts per age band on March 28, 2020 (midpoint of BICS waveO0 study).

ment between the estimates of the BICS study and model fits.
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S5 Supplementary Text: Comparison of model outputs to seroprevalence

estimates

To further assess model fit, we reviewed data from several large-scale COVID-19 seroprevalence surveys in the
United States, and qualitatively compared the sero-prevalence estimates from the antibody surveys to the esti-

mates under the contact and infection model at location (state or metropolitan area) level.

We included 14 COVID-19 antibody surveys from across the United States in this comparison (Table F15). 13
studies were conducted by the U.S. Centers for Disease Control & Prevention (CDC) in 7 locations, Connecticut,
Florida, Louisiana, Missouri, New York City, Utah, and Washington. Two rounds of seroprevalence surveys were
done in each location, except Louisiana where one seroprevalence survey was performed. The surveys included
individuals who had blood specimens tested for reasons unrelated to COVID-19 [84], and thus the study samples
may not be representative of the underlying populations. For instance, the CDC compared the predicted number
of total infections obtained under the COVID-19 sero-prevalence estimates to the number of reported cases, and
found that in most locations, approximately one in ten cases were reported. However for the study in Connecticut,
the ratio was one in six, and for the study in Missouri, the ratio was one in 24, suggesting that the study samples
in these locations may not be representative. The final survey included in the comparison was also from New York
City [85)], and included participants recruited through flyers at the entrances of grocery stores. Individuals who are
less likely to visit grocery stores may have lower infection risk (e.g. because of self-isolation) or higher infection

risk (e.g. quarantine after infection), and estimates from this study may also be subject to unknown biases.

In all studies, IgM and 1gG enzyme-linked immunosorbent assays (ELISA) were used to test for COVID-19 anti-
bodies. Common limitations of these tests are that infected individuals with antibodies may test negative (false
negatives), uninfected individuals without antibodies may test positive (false positives), that infected individuals
may not yet have developed antibodies (antibody eclipse phase), and that infected individuals may have already
lost antibodies (sero-reversion). The above studies adjusted sero-prevalence estimates for false positive and false
negative rates, however re-analyses of manufacturer sensitivity and specificity figures suggest that these num-
bers may have to be considered with caution [53]. To account for the antibody eclipse phase, we calculated as
part of the infection model the number of expected infected individuals with antibodies. Specifically, COVID-19
symptoms are estimated to develop on average 6 days after infection (estimated range 2 to 14 days) [87] and
individuals are estimated to develop IgG antibodies on average 14 days after symptom onset (estimated range 7

to 21 days) [88, B9]. Based on these estimates, we specified the infection-to-onset-of-symptoms distribution and
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the onset-to-antibody distribution as the sum of both components through
k(s) = Gamma(s; 5.1,0.86) + Normal(s; 14, 3.57) (S78)

where sisin continuous time. We then express the probability that a person in location m and age band a develops
antibodies on day s after SARS-CoV-2 infection as
s+0.5 s+0.5
ks = / k(u)du = / k(u)du Vs=2,3,..., (579)
s—0.5 s—0.5
and ks, = j;)l's k(u)du for s = 1. Using (§79), the expected number of infected individuals that develop COVID-19

antibodies on day t in age band a in location m is

t—1
an,t,a = Z Cm,s,a kt—sa (580)
s=1

where ¢, s o is the expected number of new cases on day s in age band a in location m, (§14). With regards to
sero-reversion, we note that the above studies were completed by early June. Based on the resulting short time
frame since onset of the pandemic, we assumed that infected individuals did not serorevert. We thus calculated

the expected proportion of individuals with COVID-19 antibodies on day t in location m as

t

sma = (30D bmsia) /Noms (s81)

a s=1
Study Round Period Number of participants
] Apr26-May3 1431
Connecticut May 21 - May 26 1800
~ Apr1-Apr8 1184
Louisiana - -
] Apr30-May 12 860
Minnesota May 25 - Jun 7 1323
] ] Apr 20 - Apr26 1882
Missouri

May 25 - May 30 1831
Mar 23 -Aprl 2482
Apr25-May6 1116
Apr13-Apr25 824

May 26 - May 30 1743
Apr23-Apr27 1224
Apr 6 - Apr 10 1742
Apr20-Apr24 1280
Apr20-May3 1132
May 25-Jun 5 1940
Mar23-Aprl 3264
Apr 27 -May 11 1719

New York City Metro Area

Philadelphia Metro Area

San Francisco Bay Area

South Florida

Utah

N ERPINEPNRPRNRPRPNRERPNERNRNERNRNE

Western Washington Region

Table S15: Characteristics of large-scale antibody studies used for the comparison. All dates are for the year

2020. Data were retrieved from the CDC dashboard [86].
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where N, is the number of individuals in location m. The day of comparison was set to the last day of the study
period. For the New York City study [B5], the Utah study, and the second round of the Florida study, individuals
up to age 18 were excluded from calculation of the sero-prevalence estimate (§81), because of small sample sizes

in the surveys.

Connecticut (CDC round 1), 2020-05-03 4 |
Connecticut (CDC round 2), 2020-05-26
Florida (CDC round 1), 2020-04-10
1

Florida (CDC round 2), 2020-04-24 4 | ‘

Louisiana (CDC round 1), 2020-04-08 4 |
Missouri (CDC round 1), 2020-04-26 4

Missouri (CDC round 2), 2020-05-30 4

New York City (CDC round 1), 2020-04-01 4

New York City (CDC round 2), 2020-05-06 4

Utah (CDC round 1), 2020-05-03 4

Washington (CDC round 1), 2020-04-01 4

Utah (CDC round 2), 2020-06-05 - H

Washington (CDC round 2), 2020-05-11 4

New York City (NY study), 2020-03-29 4

0.0% 10.0% 200% 30.0% 40.0%
Estimated COVID-19 seroprevalence

Estimated -=- Survey

Figure S32: Comparison between estimates of COVID-19 seroprevalence under the contact and infection model
with those from large-scale antibody studies. Shown are posterior medians and 95% credible intervals for model

output, and estimates as reported from the antibody studies, for the dates reported by the studies.

Figure §32 compares the expected proportion of individuals with COVID-19 antibodies (§87)) to study estimates.
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For Connecticut, the model estimates considerably higher seroprevalence levels than the CDC study. However un-
der the estimates of the CDC study, the ratio of expected to observed cases was unusually low at 6:1, suggesting
that seroprevalence was likely underestimated in that study by a factor of two. For Florida, survey samples were
collected in South Florida, which experienced higher numbers of reported cases and contributed disproportion-
ately towards total deaths within the state. This suggests that survey estimates likely overstated seroprevalence
compared to the state as a whole, and the implications on our comparison are unclear. For the round 1 study
in Missouri, we note the ratio of expected to observed cases was unusually high at 24:1, suggesting that sero-
prevalence was likely overestimated in the study by a factor of two. For the New York metropolitan area, the
catchment area increased from round 1 to round 2 to include Long Island, suggesting that the survey estimates
could understate seroprevalence compared to New York City in early May. For Utah, the round 2 point estimate
is significantly lower than that of round 1. For Washington, survey samples were collected in the Western region,
which also experienced higher case and death numbers than the Eastern part of Washington state, suggesting that
survey estimates could have overstated state-level seroprevalence. The second New York City study [85] found
considerably higher seroprevalence estimates at a time point before the first CDC study in New York City. Our
model estimates appear to be more in line with the sero-prevalence estimates of the two CDC studies in New York
City. Based on these considerations, we focus on a broad, more qualitative comparison between the model and
seroprevalence estimates. Using previous version of the contact-and-infection model with infection fatality ratio
priors based on [66] and on [53], the model estimates were consistently 30% to 50% below the survey estimates.
This prompted us to revisit previous infection fatality ratio estimates as described in Supplementary Text §3, sug-
gesting greater uncertainty in infection fatality ratio estimates among individuals aged 40 and below. In turn, this
uncertainty allowed the model to explore the possibility of more cases among individuals aged 40 and below,
and lead to inferences that appear to be overall more consistent with available sero-prevalence estimates. The

corresponding cumulative attack rates estimates are presented in Table S3.

DOI: https://doi.org/10.25561/82551 Page 62


https://doi.org/10.25561/82551

17 September 2020 Imperial College COVID-19 Response Team

S6 Supplementary Text: Sensitivity analyses

$6.1 Alternative assumptions on age-specific infection fatality ratios

The central analysis is based on the prior density (§45) on infection fatality ratios (IFR). The contact and infection
model is sensitive to the assumed IFR prior, as any model that infers disease dynamics from COVID-19 attributable
deaths [54]. In sensitivity analyses, we considered an alternative IFR prior density using the predicted mean and
95% prediction intervals of age-specific IFRs derived in the meta-analysis of Levin and colleagues [68]. The meta-
analysis estimated age-specific IFRs for ages 35 and above, however for the model analysis estimates for younger
age groups are required. We thus extrapolated the predicted mean and 95% prediction intervals in [68] under
their linear model as shown in Figure §33. We refer to the resulting IFR prior density as the log IFR prior constructed

from the Levin et al meta-analysis.

Then, we refitted the contact-and-infection model using the log IFR prior constructed from the Levin et al meta-
analysis. Figure §35 compares the cumulative attack rates estimated under the central model to those under the
model with log IFR prior constructed from the Levin et al. meta-analysis. The greater uncertainty in IFR values
for young individuals translates into greater uncertainty on cumulative attack rates, with the central model less
certain about how many individuals have been infected to date in several states. In addition, the posterior me-
dian estimates of cumulative attack rates are higher under the central model, when the IFR prior density allows
exploring the possibility of more infections among young individuals. Figure compares the seroprevalence
estimates under both models to the estimates of the antibody study described in Supplementary Text B5. Sero-
prevalence estimates are lower when the model is used in conjunction with the log IFR prior constructed from
the Levin et al. meta-analysis, suggesting larger differences relative to the estimates of the CDC antibody studies
when seroprevalence is low, and smaller differences relative to the estimates of the CDC antibody studies when
seroprevalence is high. On this basis we chose the infection fatality ratio prior with larger uncertainty for the

central analysis.

Figure 537 compares estimates of age-specific reproduction numbers, and the contribution of age groups to on-
ward spread under the central and alternative model. Both models make similar inferences on age-specific disease

spread, with larger uncertainty estimates under the central model.
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Figure S33: Comparison of the IFR prior used in the central analysis to the log IFR prior constructed from the
Levin et al meta-analysis. Mean and 95% uncertainty ranges of the two prior densities are shown as lines and
ribbons, with the IFR prior used in the central analysis (§45) shown in grey, and the log IFR prior constructed from

the Levin et al meta-analysis shown in orange.
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Figure S34: Overall cumulative attack rate estimates under the central model and under the model using the log
IFR prior constructed from the Levin et al meta-analysis, as of August 23, 2020. Dots and error bars indicate the

median posterior and the 95% confidence intervals, respectively. Central model in yellow and alternative model

in black.
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Figure S35: Age-specific cumulative attack rate estimates under the central model and under the model using the
log IFR prior constructed from the Levin et al. meta-analysis, as of August 23, 2020. Dots and error bars indicate
the median posterior and the 95% confidence intervals, respectively. Central model in yellow and alternative

model in black.
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Figure S36: Comparison of large-scale seroprevalence studies estimates with the expected seroprevalence un-
der the central model and the model using the log IFR prior constructed from the Levin et al. meta-analysis.
Shown are posterior medians and 95% credible intervals for model output, and estimates as reported from sero-

prevalence studies, for the dates reported by the studies and assuming a 0-day lag.
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Figure S37: Age-specific weekly reproduction numbers and contribution of age groups to onward spread under
the central model and under the model using the log IFR prior constructed from the Levin et al meta-analysis.
(Top) Estimated weekly age-specific reproduction numbers for the week starting on August 17, 2020 under the
central model (yellow) and the model using the log IFR prior constructed from the Levin et al meta-analysis (black).
Dots and error bars indicate the median posterior and the 95% confidence intervals, respectively. (Bottom) Esti-

mated cumulative contribution of age groups to onward spread as of August 24, 2020.
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$6.2 Alternative assumptions on contact intensities from and to children aged 0-14 during

the pandemic

The cell-phone derived population-level mobility data used in this study were only available for individuals aged
184. We rely on limited data from two contact surveys performed in the United Kingdom and China [63, 51] as
described in Section to characterise contact patterns from and to younger individuals during the pandemic.
Specifically, in the central analysis, the 3 * 3 + (18 — 3) * 3 + 3 % (18 — 3) = 99 contact intensities from or to
children aged 0-14 were set to the corresponding, average contact intensities observed during lockdown in the

study of Zhang and colleagues [51], as specified in (523).

In sensitivity analyses we explored the impact of lower or higher contact intensities from or to children aged 0-14

during school closures. We approached this by reformulating (§23) to the following form,

cm wal ift < tschool-close
C ) = oo _0_ . m $82
m,t,a,a { 7_Cac"g/\/'ID 0—14 if t > tiflhool-close’ ( )

where a € {[0 — 4],[5 — 9], [10 — 14]} and o’ is one of the 5-year age bands of the infection-and-contact model,
or a is one of the 5-year age bands and @’ € {[0 — 4], [5 — 9], [10 — 14]}, #5chool-close js the time index when school
closures were ordered or recommended in location m, C,,, 4 o/ are the baseline pre-COVID-19 contact intensities
described in location m in Section §3.2.2, Cac’g,VID*O*M are the average contact intensities derived from [51],

and 7 is a new scaling factor that we introduce for the purpose of sensitivity analyses.

To gauge a reasonable range of 7 values, we first calculated the contact intensity ratios between the city-level

contact matrices in [51] with the contact intensities ¢SV /P—0~14

that were used in the central analysis. The
maximum contact intensity ratio was 2.00 and the minimum was 0.15. Using data from the UK post lockdown
contact survey of Jarvis and colleagues [63], we also computed the mean contact intensities from individuals aged
18+ with children aged 0 — 4 and children age 5 — 17. We repeated calculations for the average post-lock down
contact matrix C¢OVIP—0-14 of 7hang [51]. The minimum and maximum ratio in the corresponding contact
intensities were 1.15 and 1.82. We thus performed two sensitivity analyses using 7 = 0.5 and 2, subject to the

constraint that the resulting contact intensities during lockdown were not larger than those at baseline.

Further, we undertook a fourth sensitivity analysis in which the mobility trends seen among individuals 18-24 were
extrapolated to younger individuals aged 0-17. In this analysis, time-varying contact intensities were estimated
based on Equation (515) for all age groups, and the data from the Zhang et al. contact surveys were not used.
Figure compares, for one location, the implied contact intensities used in the sensitivity analyses to those in

the central analysis, which are shown as 7 = 1.
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Figure S38: Comparison of contact intensities from and to children aged 0-14 during periods of school closures
in the sensitivity analyses. (A) Rescaled contact intensities based on estimates of Zhang and colleagues [51].
Shown are contact intensities from and to children under Equation (§82) for different values of 7. The value 7 = 1
corresponds to the central model. (B) Inferred contact intensities from and to children based on extrapolating
mobility trends of individuals aged 18-24 to younger individuals. Shown are the estimated contact intensities in
California on April 15, 2020. Parts of the time varying contact matrices that are the same in the central model and

the sensitivity analyses are plotted in grey.

Then, we re-fitted the contact-and-infection model. Figure F39 compares estimates of age-specific reproduction
numbers, and the contribution of age groups to onward spread under the central and alternative models. The
alternative model assumptions lead to considerable differences in estimated reproduction numbers by age groups.

For children aged 0 — 9, we estimate reproduction numbers ranged from 0.30 [0.26, 0.34] to 0.75 [0.66, 0.86] as T
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Figure S39: Age-specific weekly reproduction numbers and contribution of age groups to onward spread under
the central model and under the alternative models using different assumption on contact intensities from and
to children aged 0-14. Shown are on top the estimated age-specific weekly reproduction numbers for the week
starting on August 17, 2020 under the central model (yellow) and the alternative models (black), and below the
estimated cumulative contribution of age groups to onward spread as of August 24, 2020. (A) Results for contact
intensities from and to children aged 0-14 under different T parameters, see (§82). The value 7 = 1 corresponds
to the central model. (B) Results for contact and intensities from and to children aged 0-14 that are obtained by
extrapolating the mobility trends from individuals 18-24 to younger individuals. Dots and error bars indicate the

median posterior and the 95% confidence intervals, respectively.
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increased from 0.5 to 2, and for individuals aged 10-19 we estimate reproduction numbers ranged from 0.89 [0.79,
1.01] to 0.91 [0.82, 1.02] as T increased from 0.5 to 2. Reproduction numbers were similar to those obtained
under the central model under the alternative model in which mobility trends for individuals aged 18-24 were
extrapolated to younger individuals. However these differences had little impact on the estimated contribution of
different age groups to onward spread. For children aged 0 — 9, we estimate the contribution to onward spread
increased from 0.59% [0.38%-0.93%)] to 2.23% [1.50%-3.38%] as 7 increased from 0.5 to 2. For individuals aged
10-19, we estimate the contribution to onward spread increased from 9.76% [8.96%-10.56%)] to 10.13% [9.39%-
10.90%] as 7 increased from 0.5 to 2. In the alternative model in which mobility trends for individuals aged 18-24
were extrapolated to younger individuals, the estimated contribution to onward spread from children aged 0-9
was 1.74% [1.03%-3.06%], and the estimated contribution to onward spread from individuals aged 10-19 was
11.90% [11.03%-13.25%].
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