Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Predicting epileptic seizures using nonnegative matrix factorization

View ORCID ProfileOlivera Stojanović, Gordon Pipa
doi: https://doi.org/10.1101/19000430
Olivera Stojanović
1Department of Neuroinformatics, Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Olivera Stojanović
Gordon Pipa
1Department of Neuroinformatics, Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

This paper presents a procedure for the patient-specific prediction of epileptic seizures. To this end, a combination of nonnegative matrix factorization (NMF) and smooth basis functions with robust regression is applied to power spectra of intracranial electroencephalographic (iEEG) signals. The resulting time and frequency components capture the dominant information from power spectra, while removing outliers and noise. This makes it possible to detect structure in preictal states, which is used for classification. Linear support vector machines (SVM) with L1 regularization are used to select and weigh the contributions from different number of not equally informative channels among patients. Due to class imbalance in data, synthetic minority over-sampling technique (SMOTE) is applied. The resulting method yields a computationally and conceptually simple, interpretable model of EEG signals of preictal and interictal states, which shows a good performance for the task of seizure prediction.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

The authors did not receive any funding for this work.

Author Declarations

All relevant ethical guidelines have been followed and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

Any clinical trials involved have been registered with an ICMJE-approved registry such as ClinicalTrials.gov and the trial ID is included in the manuscript.

NA

I have followed all appropriate research reporting guidelines and uploaded the relevant Equator, ICMJE or other checklist(s) as supplementary files, if applicable.

Yes

Footnotes

  • ↵* ostojanovic{at}uos.de

Data Availability

The data used in this project is a part of the EPILEPSIAE dataset, which is not publicly available. For this reason, there are no specific paths or identification numbers in the code repository which is publicly available. The code is provided here: https://github.com/ostojanovic/seizure_prediction

https://github.com/ostojanovic/seizure_prediction

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted June 25, 2019.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Predicting epileptic seizures using nonnegative matrix factorization
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Predicting epileptic seizures using nonnegative matrix factorization
Olivera Stojanović, Gordon Pipa
medRxiv 19000430; doi: https://doi.org/10.1101/19000430
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Predicting epileptic seizures using nonnegative matrix factorization
Olivera Stojanović, Gordon Pipa
medRxiv 19000430; doi: https://doi.org/10.1101/19000430

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)