Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Design of a computer model for the identification of adolescent swimmers with low BMD

View ORCID ProfileJorge Marin-Puyalto, Alba Gomez-Cabello, Alejandro Gomez-Bruton, Angel Matute-Llorente, Alejandro Gonzalez-Aguero, Jose Antonio Casajus, German Vicente-Rodriguez
doi: https://doi.org/10.1101/19001792
Jorge Marin-Puyalto
1GENUD (Growth, Exercise, NUtrition and Development) Research Group, Universidad de Zaragoza, Zaragoza, Spain
2Faculty of Health and Sport Sciences, Huesca, Universidad de Zaragoza, Spain
3EXERNET red de investigación en ejercicio físico y salud para poblaciones especiales
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jorge Marin-Puyalto
Alba Gomez-Cabello
1GENUD (Growth, Exercise, NUtrition and Development) Research Group, Universidad de Zaragoza, Zaragoza, Spain
3EXERNET red de investigación en ejercicio físico y salud para poblaciones especiales
4Centro Universitario de la Defensa, Zaragoza, Spain
5Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Spain
6Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza – CITA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alejandro Gomez-Bruton
1GENUD (Growth, Exercise, NUtrition and Development) Research Group, Universidad de Zaragoza, Zaragoza, Spain
2Faculty of Health and Sport Sciences, Huesca, Universidad de Zaragoza, Spain
3EXERNET red de investigación en ejercicio físico y salud para poblaciones especiales
5Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Angel Matute-Llorente
1GENUD (Growth, Exercise, NUtrition and Development) Research Group, Universidad de Zaragoza, Zaragoza, Spain
2Faculty of Health and Sport Sciences, Huesca, Universidad de Zaragoza, Spain
3EXERNET red de investigación en ejercicio físico y salud para poblaciones especiales
5Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Spain
6Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza – CITA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alejandro Gonzalez-Aguero
1GENUD (Growth, Exercise, NUtrition and Development) Research Group, Universidad de Zaragoza, Zaragoza, Spain
2Faculty of Health and Sport Sciences, Huesca, Universidad de Zaragoza, Spain
3EXERNET red de investigación en ejercicio físico y salud para poblaciones especiales
5Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Spain
6Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza – CITA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jose Antonio Casajus
1GENUD (Growth, Exercise, NUtrition and Development) Research Group, Universidad de Zaragoza, Zaragoza, Spain
2Faculty of Health and Sport Sciences, Huesca, Universidad de Zaragoza, Spain
3EXERNET red de investigación en ejercicio físico y salud para poblaciones especiales
5Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Spain
6Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza – CITA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
German Vicente-Rodriguez
1GENUD (Growth, Exercise, NUtrition and Development) Research Group, Universidad de Zaragoza, Zaragoza, Spain
2Faculty of Health and Sport Sciences, Huesca, Universidad de Zaragoza, Spain
3EXERNET red de investigación en ejercicio físico y salud para poblaciones especiales
5Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Spain
6Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza – CITA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: gervicen{at}unizar.es
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Objectives This paper aims to elaborate a decision tree for the early detection of adolescent swimmers at risk of presenting low bone mineral density (BMD), based on easily measurable fitness and performance variables.

Methods Bone mineral status of 78 adolescent swimmers was determined using DXA scans at the hip and subtotal body. Participants also underwent physical fitness (upper and lower body strength, running speed and cardiovascular endurance) and performance (swimming history, speed and ranking) assessments. A gradient boosting machine regression tree was built in order to predict BMD of the swimmers and to further develop a simpler individual decision tree, using a subtotal BMD height-adjusted Z-score of −1 as threshold value.

Results The predicted BMD using the gradient boosted model was strongly correlated with the actual BMD values obtained from DXA (r=0.960, p<0.0001) with a root mean squared error of 0.034 g/cm2. According to a simple decision tree, that showed a 73.9% of classification accuracy, swimmers with a body mass index (BMI) lower than 17 kg/m2 or a handgrip strength inferior to 43kg with the sum of both arms could be at higher risk of having low BMD.

Conclusion Easily measurable fitness variables (BMI and handgrip strength) could be used for the early detection of adolescent swimmers at risk of suffering from low BMD. The presented decision tree could be used in training settings to determine the necessity of further BMD assessments.

What are the new findings?

  • Adolescent swimmers with a low BMI or handgrip strength seem more likely to be at higher risk of having low BMD.

  • Subtotal BMD values predicted from our regression model are strongly correlated with DXA measurements.

How might it impact on clinical practice in the future

  • Healthcare professionals could easily detect adolescent swimmers in need of a DXA scan.

  • The computer-based regression tree could be included in low BMD management and screening strategies.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work was supported by the Spanish ?Ministerio de Economía y Competitividad? ?Plan Nacional I+D+i2008?2011 (Project DEP2011-29093)? and by ?Ministerio de Educación y Ciencia? (Project DEP2005-00046). This project has been co-financed by ?Fondo Europeo de Desarrollo Regional? (MICINN-FEDER). JMP received a Grant FPU014/04302 from ?Ministerio de Educación, Cultura y Deportes?.

Author Declarations

All relevant ethical guidelines have been followed and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

Any clinical trials involved have been registered with an ICMJE-approved registry such as ClinicalTrials.gov and the trial ID is included in the manuscript.

Not Applicable

I have followed all appropriate research reporting guidelines and uploaded the relevant Equator, ICMJE or other checklist(s) as supplementary files, if applicable.

Not Applicable

Data Availability

Data files can be requested to the corresponding author

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted July 13, 2019.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Design of a computer model for the identification of adolescent swimmers with low BMD
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Design of a computer model for the identification of adolescent swimmers with low BMD
Jorge Marin-Puyalto, Alba Gomez-Cabello, Alejandro Gomez-Bruton, Angel Matute-Llorente, Alejandro Gonzalez-Aguero, Jose Antonio Casajus, German Vicente-Rodriguez
medRxiv 19001792; doi: https://doi.org/10.1101/19001792
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Design of a computer model for the identification of adolescent swimmers with low BMD
Jorge Marin-Puyalto, Alba Gomez-Cabello, Alejandro Gomez-Bruton, Angel Matute-Llorente, Alejandro Gonzalez-Aguero, Jose Antonio Casajus, German Vicente-Rodriguez
medRxiv 19001792; doi: https://doi.org/10.1101/19001792

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Sports Medicine
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)