Machine learning-based prediction of response to PARP inhibition across cancer types
Katherine E. Hill, Ahmed Rattani, View ORCID ProfileChristopher E. Lietz, Cassandra Garbutt, Edwin Choy, Gregory M. Cote, Aedin Culhane, Andrew D. Kelly, Benjamin Haibe-Kains, Dimitrios Spentzos
doi: https://doi.org/10.1101/19007757
Katherine E. Hill
1Department of Molecular Biology, Princeton University
Ahmed Rattani
2Department of Systems Biology, Harvard Medical School
Christopher E. Lietz
3Department of Orthopedic Surgery, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital Cancer Center
Cassandra Garbutt
3Department of Orthopedic Surgery, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital Cancer Center
Edwin Choy
4Division of Hematology/Oncology, Cancer Center Massachusetts General Hospital
Gregory M. Cote
4Division of Hematology/Oncology, Cancer Center Massachusetts General Hospital
Aedin Culhane
5Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute
Andrew D. Kelly
6Department of Internal Medicine, Lankenau Medical Center
Benjamin Haibe-Kains
7Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto
Dimitrios Spentzos
3Department of Orthopedic Surgery, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital Cancer Center

Article usage
Posted September 27, 2019.
Machine learning-based prediction of response to PARP inhibition across cancer types
Katherine E. Hill, Ahmed Rattani, Christopher E. Lietz, Cassandra Garbutt, Edwin Choy, Gregory M. Cote, Aedin Culhane, Andrew D. Kelly, Benjamin Haibe-Kains, Dimitrios Spentzos
medRxiv 19007757; doi: https://doi.org/10.1101/19007757
Machine learning-based prediction of response to PARP inhibition across cancer types
Katherine E. Hill, Ahmed Rattani, Christopher E. Lietz, Cassandra Garbutt, Edwin Choy, Gregory M. Cote, Aedin Culhane, Andrew D. Kelly, Benjamin Haibe-Kains, Dimitrios Spentzos
medRxiv 19007757; doi: https://doi.org/10.1101/19007757
Subject Area
Subject Areas
- Addiction Medicine (349)
- Allergy and Immunology (668)
- Allergy and Immunology (668)
- Anesthesia (181)
- Cardiovascular Medicine (2648)
- Dermatology (223)
- Emergency Medicine (399)
- Epidemiology (12228)
- Forensic Medicine (10)
- Gastroenterology (759)
- Genetic and Genomic Medicine (4103)
- Geriatric Medicine (387)
- Health Economics (680)
- Health Informatics (2657)
- Health Policy (1005)
- Hematology (363)
- HIV/AIDS (851)
- Medical Education (399)
- Medical Ethics (109)
- Nephrology (436)
- Neurology (3882)
- Nursing (209)
- Nutrition (577)
- Oncology (2030)
- Ophthalmology (585)
- Orthopedics (240)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1115)
- Primary Care Research (452)
- Public and Global Health (6527)
- Radiology and Imaging (1403)
- Respiratory Medicine (871)
- Rheumatology (409)
- Sports Medicine (342)
- Surgery (448)
- Toxicology (53)
- Transplantation (185)
- Urology (165)