Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Macro-parasite transmission in dynamic seasonal environment: Basic Reproductive Number, endemicity, and control

View ORCID ProfileQ. Huang, View ORCID ProfileD. Gurarie, M. Ndeffo-Mbah, E. Li, View ORCID ProfileCH. King
doi: https://doi.org/10.1101/19012245
Q. Huang
Case Western Reserve University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Q. Huang
  • For correspondence: qxh119{at}case.edu
D. Gurarie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Gurarie
M. Ndeffo-Mbah
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CH. King
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for CH. King
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Seasonality of transmission environment, which includes snail populations and habitats, or human-snail contact patterns, can affect the dynamics of schistosomiasis infection, and control outcomes. Conventional modeling approaches often ignore or oversimplify it by applying ‘seasonal mean’ formulation. Mathematically, such ‘averaging’ is justified when model outputs/quantities of interest depend linearly on input variables. That is not generally the case for macroparasite transmission models, where model outputs are nonlinear functions of seasonality fashion.

Another commonly used approach for Schistosomiasis modeling is a reduction of coupled human-snail system to a single ‘human equation’, via quasi-stationary snail (intermediate host) dynamics. The basic questions arising from these approaches are whether such ‘seasonal averaging’ and ‘intermediate host reduction’ are suitable for highly variable/seasonal environments, and what implications these methods have on models’ predictive potential of control interventions.

Here we address these questions by using a combination of mathematical analysis and numerical simulation of two commonly used models for macroparasite transmission, MacDonald (MWB), and stratified worm burden (SWB) snail-human systems. We showed that predictions from ‘seasonal averaging’ models can depart significantly from those of quasi-stationary models. Typically, seasonality would lower endemicity and sustained infection, vs. stationary system with comparable transmission inputs. Furthermore, discrepancies between the two models (‘seasonal’ and its ‘stationary mean’) increase with amplitude (or variance) of seasonality. So sufficiently high variability can render infection unsustainable. Similar discrepancies were observed between coupled and reduced ‘single host’ models, with reduced model overpredicting sustained endemicity. Seasonal variability of transmission raises the question of optimal control timing. Using dynamic simulation, we show that optimal timing of repeated MDA is about half season past the snail peak, where snail population attains its minimal value. Compared to sub-optimal timing, such strategy can reduce human worm burden by factor 2 after 5-6 rounds of MDA. We also extended our models for dynamic snail populations, which allowed us to study the effect of repeated molluscicide, or combined strategy (MDA + molluscicide). The optimal time for molluscicide alone is the end or the start of season, and combined strategy can give additional reduction, and in some cases lead to elimination.

Overall, reduced sustainability in seasonal environment makes it more amenable to control interventions, compared to stationary environment.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

Additional support was provided by the Schistosomiasis Consortium for Operational Research and Evaluation funded by the University of Georgia Research Foundation through a grant from the Bill & Melinda Gates Foundation (DG and CHK).

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

No data used.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted February 03, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Macro-parasite transmission in dynamic seasonal environment: Basic Reproductive Number, endemicity, and control
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Macro-parasite transmission in dynamic seasonal environment: Basic Reproductive Number, endemicity, and control
Q. Huang, D. Gurarie, M. Ndeffo-Mbah, E. Li, CH. King
medRxiv 19012245; doi: https://doi.org/10.1101/19012245
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Macro-parasite transmission in dynamic seasonal environment: Basic Reproductive Number, endemicity, and control
Q. Huang, D. Gurarie, M. Ndeffo-Mbah, E. Li, CH. King
medRxiv 19012245; doi: https://doi.org/10.1101/19012245

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)