Abstract
in 2019, estimated New Cases 268.600, Breast cancer has one of the most common cancers and is one of the world’s leading causes of death for women. Classification and data mining is an efficient way to classify information. Particularly in the medical field where prediction techniques are commonly used for early detection and effective treatment in diagnosis and research.These paper tests models for the mammogram analysis of breast cancer information from 23 of the more widely used machine learning algorithms such as Decision Tree, Random forest, K-nearest neighbors and support vector machine. The spontaneously splits results are distributed from a replicated 10-fold cross-validation method. The accuracy calculated by Regression Metrics such as Mean Absolute Error, Mean Squared Error, R2 Score and Clustering Metrics such as Adjusted Rand Index, Homogeneity, V-measure.accuracy has been checked F-Measure, AUC, and Cross-Validation. Thus, proper identification of patients with breast cancer would create care opportunities, for example, the supervision and the implementation of intervention plans could benefit the quality of long-term care. Experimental results reveal that the maximum precision 100%with the lowest error rate is obtained with Ada-boost Classifier.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
authors did not receive any funds
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
https://github.com/peterhabib/EvaluationOfML/tree/master