Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Transcranial magnetic stimulation language mapping analysis revisited: Machine learning classification of 90 patients reveals distinct reorganization pattern in aphasic patients

View ORCID ProfileZiqian Wang, View ORCID ProfileLucius Fekonja, Felix Dreyer, View ORCID ProfilePeter Vajkoczy, View ORCID ProfileThomas Picht
doi: https://doi.org/10.1101/2020.02.06.20020693
Ziqian Wang
aDepartment of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ziqian Wang
Lucius Fekonja
aDepartment of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
bCluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt University, Berlin, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Lucius Fekonja
  • For correspondence: lucius.fekonja{at}charite.de
Felix Dreyer
cFreie Universität Berlin, Brain Language Laboratory, Department of Philosophy and Humanities, Berlin, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter Vajkoczy
aDepartment of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Peter Vajkoczy
Thomas Picht
aDepartment of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
bCluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt University, Berlin, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Thomas Picht
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Article usage

Article usage: February 2020 to June 2025

AbstractFullPdf
Feb 2020349077
Mar 2020109046
Apr 202065020
May 202079029
Jun 202037011
Jul 20203309
Aug 202042017
Sep 202034017
Oct 20202908
Nov 20201408
Dec 20201843
Jan 20212034
Feb 20215024
Mar 20215426
Apr 202164511
May 202152511
Jun 202145511
Jul 202122513
Aug 202129717
Sep 202117328
Oct 202125123
Nov 202123422
Dec 20211317
Jan 20221266
Feb 20221106
Mar 202220312
Apr 20221305
May 202214311
Jun 20221304
Jul 20221010
Aug 202217211
Sep 202221212
Oct 20221705
Nov 20221348
Dec 20221416
Jan 20231039
Feb 20231048
Mar 2023935
Apr 20231954
May 202312311
Jun 2023952
Jul 2023633
Aug 2023161412
Sep 2023950
Oct 2023721
Nov 20231143
Dec 20231263
Jan 2024542
Feb 20241002
Mar 20241708
Apr 20247114
May 2024874
Jun 20241554
Jul 2024243
Aug 2024417
Sep 20241137
Oct 202481111
Nov 2024695
Dec 202431711
Jan 2025778
Feb 20257146
Mar 202521179
Apr 2025142511
May 202582912
Jun 2025641
Back to top
PreviousNext
Posted February 07, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Transcranial magnetic stimulation language mapping analysis revisited: Machine learning classification of 90 patients reveals distinct reorganization pattern in aphasic patients
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Transcranial magnetic stimulation language mapping analysis revisited: Machine learning classification of 90 patients reveals distinct reorganization pattern in aphasic patients
Ziqian Wang, Lucius Fekonja, Felix Dreyer, Peter Vajkoczy, Thomas Picht
medRxiv 2020.02.06.20020693; doi: https://doi.org/10.1101/2020.02.06.20020693
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Transcranial magnetic stimulation language mapping analysis revisited: Machine learning classification of 90 patients reveals distinct reorganization pattern in aphasic patients
Ziqian Wang, Lucius Fekonja, Felix Dreyer, Peter Vajkoczy, Thomas Picht
medRxiv 2020.02.06.20020693; doi: https://doi.org/10.1101/2020.02.06.20020693

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neurology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)