Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Analysis of the epidemic growth of the early 2019-nCoV outbreak using internationally confirmed cases

View ORCID ProfileQingyuan Zhao, Yang Chen, Dylan S Small
doi: https://doi.org/10.1101/2020.02.06.20020941
Qingyuan Zhao
1Statistical Laboratory, University of Cambridge
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Qingyuan Zhao
  • For correspondence: qyzhao{at}statslab.cam.ac.uk
Yang Chen
2Department of Statistics, University of Michigan
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dylan S Small
3Department of Statistics, University of Pennsylvania
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Background On January 23, 2020, a quarantine was imposed on travel in and out of Wuhan, where the 2019 novel coronavirus (2019-nCoV) outbreak originated from. Previous analyses estimated the basic epidemiological parameters using symptom onset dates of the confirmed cases in Wuhan and outside China.

Methods We obtained information on the 46 coronavirus cases who traveled from Wuhan before January 23 and have been subsequently confirmed in Hong Kong, Japan, Korea, Macau, Singapore, and Taiwan as of February 5, 2020. Most cases have detailed travel history and disease progress. Compared to previous analyses, an important distinction is that we used this data to informatively simulate the infection time of each case using the symptom onset time, previously reported incubation interval, and travel history. We then fitted a simple exponential growth model with adjustment for the January 23 travel ban to the distribution of the simulated infection time. We used a Bayesian analysis with diffuse priors to quantify the uncertainty of the estimated epidemiological parameters. We performed sensitivity analysis to different choices of incubation interval and the hyperparameters in the prior specification.

Results We found that our model provides good fit to the distribution of the infection time. Assuming the travel rate to the selected countries and regions is constant over the study period, we found that the epidemic was doubling in size every 2.9 days (95% credible interval [CrI], 2 days—4.1 days). Using previously reported serial interval for 2019-nCoV, the estimated basic reproduction number is 5.7 (95% CrI, 3.4—9.2). The estimates did not change substantially if we assumed the travel rate doubled in the last 3 days before January 23, when we used previously reported incubation interval for severe acute respiratory syndrome (SARS), or when we changed the hyperparameters in our prior specification.

Conclusions Our estimated epidemiological parameters are higher than an earlier report using confirmed cases in Wuhan. This indicates the 2019-nCoV could have been spreading faster than previous estimates.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

We have no funding or financial conflict of interest to declare.

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

Data for this study are from public sources. We have kept the data and computer programs used in our analysis at the link below, so the results reported in this article and previous versions of our analysis are fully reproducible.

https://github.com/qingyuanzhao/2019-nCov-Data

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted February 09, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Analysis of the epidemic growth of the early 2019-nCoV outbreak using internationally confirmed cases
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Analysis of the epidemic growth of the early 2019-nCoV outbreak using internationally confirmed cases
Qingyuan Zhao, Yang Chen, Dylan S Small
medRxiv 2020.02.06.20020941; doi: https://doi.org/10.1101/2020.02.06.20020941
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Analysis of the epidemic growth of the early 2019-nCoV outbreak using internationally confirmed cases
Qingyuan Zhao, Yang Chen, Dylan S Small
medRxiv 2020.02.06.20020941; doi: https://doi.org/10.1101/2020.02.06.20020941

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)