Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Quantifying bias of COVID-19 prevalence and severity estimates in Wuhan, China that depend on reported cases in international travelers

View ORCID ProfileRene Niehus, View ORCID ProfilePablo M. De Salazar, View ORCID ProfileAimee R. Taylor, View ORCID ProfileMarc Lipsitch
doi: https://doi.org/10.1101/2020.02.13.20022707
Rene Niehus
Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Rene Niehus
  • For correspondence: rniehus{at}hsph.harvard.edu pablom{at}hsph.harvard.edu mlipsitc{at}hsph.harvard.edu
Pablo M. De Salazar
Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Pablo M. De Salazar
  • For correspondence: rniehus{at}hsph.harvard.edu pablom{at}hsph.harvard.edu mlipsitc{at}hsph.harvard.edu
Aimee R. Taylor
Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Aimee R. Taylor
Marc Lipsitch
Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marc Lipsitch
  • For correspondence: rniehus{at}hsph.harvard.edu pablom{at}hsph.harvard.edu mlipsitc{at}hsph.harvard.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Article usage

Article usage: February 2020 to June 2025

AbstractFullPdf
Feb 20201829307380
Mar 20201264504399
Apr 2020359402313
May 202013130710
Jun 20207330263
Jul 20207660258
Aug 20205060191
Sep 20204690140
Oct 20204790224
Nov 20204896182
Dec 2020326391
Jan 2021350677
Feb 2021294386
Mar 20214172286
Apr 202137541119
May 202132440120
Jun 20213191685
Jul 20212792187
Aug 20212512284
Sep 20212741568
Oct 20212671374
Nov 20212341092
Dec 2021239655
Jan 2022169835
Feb 2022184729
Mar 2022258432
Apr 20222121435
May 2022172850
Jun 2022189033
Jul 2022169739
Aug 2022161439
Sep 20221681740
Oct 20221721339
Nov 20221394432
Dec 20221831639
Jan 20231631527
Feb 2023137829
Mar 2023209336
Apr 2023147646
May 202387334
Jun 20231231332
Jul 2023123243
Aug 20231301640
Sep 2023134722
Oct 2023209829
Nov 20233531432
Dec 202373632
Jan 202476623
Feb 202485819
Mar 20241051344
Apr 2024961224
May 2024113424
Jun 20241141154
Jul 2024116830
Aug 2024131643
Sep 2024166532
Oct 20241251337
Nov 2024113632
Dec 20241571138
Jan 20251251123
Feb 20251032526
Mar 20251472722
Apr 202598924
May 20251152047
Jun 20251547
Back to top
PreviousNext
Posted February 18, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Quantifying bias of COVID-19 prevalence and severity estimates in Wuhan, China that depend on reported cases in international travelers
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Quantifying bias of COVID-19 prevalence and severity estimates in Wuhan, China that depend on reported cases in international travelers
Rene Niehus, Pablo M. De Salazar, Aimee R. Taylor, Marc Lipsitch
medRxiv 2020.02.13.20022707; doi: https://doi.org/10.1101/2020.02.13.20022707
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Quantifying bias of COVID-19 prevalence and severity estimates in Wuhan, China that depend on reported cases in international travelers
Rene Niehus, Pablo M. De Salazar, Aimee R. Taylor, Marc Lipsitch
medRxiv 2020.02.13.20022707; doi: https://doi.org/10.1101/2020.02.13.20022707

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)