Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

A Simple Mathematical Model for Estimating the Inflection Points of COVID-19 Outbreaks

Zhanshan Sam Ma
doi: https://doi.org/10.1101/2020.03.25.20043893
Zhanshan Sam Ma
1Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences
2Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ma{at}vandals.uidaho.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Background Exponential-like infection growths leading to peaks (which could be the inflection points or turning points) are usually the hallmarks of infectious disease outbreaks including coronaviruses. To predict the inflection points, i.e., inflection time (Tmax) & maximal infection number (Imax) of the novel coronavirus (COVID-19), we adopted a trial and error strategy and explored a series of approaches from simple logistic modeling (that has an asymptomatic line) to sophisticated tipping point detection techniques for detecting phase transitions but failed to obtain satisfactory results.

Method Inspired by its success in diversity-time relationship (DTR), we apply the PLEC (power law with exponential cutoff) model for detecting the inflection points of COVID-19 outbreaks. The model was previously used to extend the classic species-time relationship (STR) for general DTR (Ma 2018), and it has two “secondary” parameters (computed from its 3 parameters including power law scaling parameter w, taper-off parameter d to overwhelm virtually exponential growth ultimately, and a parameter c related to initial infections): one that was originally used for estimating the potential or ‘dark’ biodiversity is proposed to estimate the maximal infection number (Imax) and another is proposed to determine the corresponding inflection time point (Tmax).

Results We successfully estimated the inflection points [Imax, Tmax] for most provinces (≈85%) in China with error rates <5% in both Imax and Tmax. We also discussed the constraints and limitations of the proposed approach, including (i) sensitive to disruptive jumps, (ii) requiring sufficiently long datasets, and (iii) limited to unimodal outbreaks.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

N/A

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data analyzed are available in public domain and the source links are provided in the manuscript.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted March 27, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A Simple Mathematical Model for Estimating the Inflection Points of COVID-19 Outbreaks
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A Simple Mathematical Model for Estimating the Inflection Points of COVID-19 Outbreaks
Zhanshan Sam Ma
medRxiv 2020.03.25.20043893; doi: https://doi.org/10.1101/2020.03.25.20043893
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A Simple Mathematical Model for Estimating the Inflection Points of COVID-19 Outbreaks
Zhanshan Sam Ma
medRxiv 2020.03.25.20043893; doi: https://doi.org/10.1101/2020.03.25.20043893

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)