Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Projecting the Spread of COVID19 for Germany

Jean Roch Donsimoni, René Glawion, Bodo Plachter, Klaus Wälde
doi: https://doi.org/10.1101/2020.03.26.20044214
Jean Roch Donsimoni
aJohannes Gutenberg University Mainz
cDepartment of Economics
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jdonsimo{at}uni-mainz.de waelde{at}uni-mainz.de
René Glawion
bHamburg University
cDepartment of Economics
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bodo Plachter
aJohannes Gutenberg University Mainz
dInstitute for Virology
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Klaus Wälde
aJohannes Gutenberg University Mainz
cDepartment of Economics
eCESifo and IZA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jdonsimo{at}uni-mainz.de waelde{at}uni-mainz.de
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

We model the evolution of the number of individuals that are reported to be sick with COVID-19 in Germany. Our theoretical framework builds on a continuous time Markov chain with four states: healthy without infection, sick, healthy after recovery or after infection but without symptoms and dead. Our quantitative solution matches the number of sick individuals up to the most recent observation and ends with a share of sick individuals following from infection rates and sickness probabilities. We employ this framework to study inter alia the expected peak of the number of sick individuals in a scenario without public regulation of social contacts. We also study the effects of public regulations. For all scenarios we report the expected end of the CoV-2 epidemic.

We have four general findings: First, current epidemiological thinking implies that the long-run effects of the epidemic only depend on the aggregate long-run infection rate and on the individual risk to turn sick after an infection. Any measures by individuals and the public therefore only influence the dynamics of spread of CoV-2. Second, predictions about the duration and level of the epidemic must strongly distinguish between the officially reported numbers (Robert Koch Institut, RKI) and actual numbers of sick individuals. Third, given the current (scarce) medical knowledge about long-run infection rate and individual risks to turn sick, any prediction on the length (duration in months) and strength (e.g. maximum numbers of sick individuals on a given day) is subject to a lot of uncertainty. Our predictions therefore offer robustness analyses that provide ranges on how long the epidemic will last and how strong it will be. Fourth, public interventions that are already in place and that are being discussed can lead to more and less severe outcomes of the epidemic. If an intervention takes place too early, the epidemic can actually be stronger than with an intervention that starts later. Interventions should therefore be contingent on current infection rates in regions or countries.

Concerning predictions about COVID-19 in Germany, we find that the long-run number of sick individuals (that are reported to the RKI), once the epidemic is over, will lie between 500 thousand and 5 million individuals. While this seems to be an absurd large range for a precise projection, this reflects the uncertainty about the long-run infection rate in Germany. If we assume that Germany will follow the good scenario of Hubei (and we are even a bit more conservative given discussions about data quality), we will end up with 500 thousand sick individuals over the entire epidemic. If by contrast we believe (as many argue) that once the epidemic is over 70% of the population will have been infected (and thereby immune), we will end up at 5 million cases.

Defining the end of the epidemic by less than 100 newly reported sick individuals per day, we find a large variation depending on the effectiveness of governmental pleas and regulations to reduce social contacts. An epidemic that is not influenced by public health measures would end mid June 2020. With public health measures lasting for few weeks, the end is delayed by around one month or two. The advantage of the delay, however, is to reduce the peak number of individuals that are simultaneously sick. When we believe in long-run infection rates of 70%, this number is equally high for all scenarios we went through and well above 1 million. When we can hope for the Hubei-scenario, the maximum number of sick individuals will be around 200 thousand “only”.

Whatever value of the range of long-run infection rates we want to assume, the epidemic will last at least until June, with extensive and potentially future public health measures, it will last until July. In the worst case, it will last until end of August.

We emphasize that all projections are subject to uncertainty and permanent monitoring of observed incidences are taken into account to update the projection. The most recent projections are available at https://www.macro.economics.unimainz.de/corona-blog/.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

No external funding was provided.

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All of the data used has been collected from the WHO situation reports, the JHU COVID19 dashboard maintaining by Dong et al (2020), and Eurostat for the population statistics.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports

https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

https://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=tps00001&language=en

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted March 30, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Projecting the Spread of COVID19 for Germany
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Projecting the Spread of COVID19 for Germany
Jean Roch Donsimoni, René Glawion, Bodo Plachter, Klaus Wälde
medRxiv 2020.03.26.20044214; doi: https://doi.org/10.1101/2020.03.26.20044214
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Projecting the Spread of COVID19 for Germany
Jean Roch Donsimoni, René Glawion, Bodo Plachter, Klaus Wälde
medRxiv 2020.03.26.20044214; doi: https://doi.org/10.1101/2020.03.26.20044214

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Economics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)