Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Basic prediction methodology for covid-19: estimation and sensitivity considerations

Tom Britton
doi: https://doi.org/10.1101/2020.03.27.20045575
Tom Britton
1Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: tom.britton{at}math.su.se
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Summary

The purpose of the present paper is to present simple estimation and prediction methods for basic quantities in an emerging epidemic like the ongoing covid-10 pandemic. The simple methods have the advantage that relations between basic quantities become more transparent, thus shedding light to which quantities have biggest impact on predictions, with the additional conclusion that uncertainties in these quantities carry over to high uncertainty also in predictions.

A simple non-parametric prediction method for future cumulative case fatalities, as well as future cumulative incidence of infections (assuming a given infection fatality risk f), is presented. The method uses cumulative reported case fatalities up to present time as input data. It is also described how the introduction of preventive measures of a given magnitude ρ will affect the two incidence predictions, using basic theory of epidemic models. This methodology is then reversed, thus enabling estimation of the preventive magnitude ρ, and of the resulting effective reproduction number RE. However, the effects of preventive measures only start affecting case fatalities some 3-4 weeks later, so estimates are only available after this time has elapsed. The methodology is applicable in the early stage of an outbreak, before, say, 10% of the community have been infected.

Beside giving simple estimation and prediction tools for an ongoing epidemic, another important conclusion lies in the observation that the two quantities f (infection fatality risk) and ρ (the magnitude of preventive measures) have very big impact on predictions. Further, both of these quantities currently have very high uncertainty: current estimates of f lie in the range 0.2% up to 2% ([9], [7]), and the overall effect of several combined preventive measures is clearly very uncertain.

The two main findings from the paper are hence that, a) any prediction containing f, and/or some preventive measures, contain a large amount of uncertainty (which is usually not acknowledged well enough), and b) obtaining more accurate estimates of in particular f, should be highly prioritized. Seroprevalence testing of random samples in a community where the epidemic has ended are urgently needed.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

Stockholm University and the Swedish Research Council

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

No data is used

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted April 07, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Basic prediction methodology for covid-19: estimation and sensitivity considerations
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Basic prediction methodology for covid-19: estimation and sensitivity considerations
Tom Britton
medRxiv 2020.03.27.20045575; doi: https://doi.org/10.1101/2020.03.27.20045575
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Basic prediction methodology for covid-19: estimation and sensitivity considerations
Tom Britton
medRxiv 2020.03.27.20045575; doi: https://doi.org/10.1101/2020.03.27.20045575

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)