Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

A hybrid multi-scale model of COVID-19 transmission dynamics to assess the potential of non-pharmaceutical interventions

Anass Bouchnita, Aissam Jebrane
doi: https://doi.org/10.1101/2020.04.05.20054460
Anass Bouchnita
aComplex Systems and Interactions Team, Ecole Centrale Casablanca, Ville Verte, Bouskoura, Casablanca 20000, Morocco
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: anass.bouchnita{at}centrale-casablanca.ma
Aissam Jebrane
aComplex Systems and Interactions Team, Ecole Centrale Casablanca, Ville Verte, Bouskoura, Casablanca 20000, Morocco
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that emerged in Wuhan, China in December 2019. It has caused a global outbreak which represents a major threat to global health. Public health resorted to non-pharmaceutical interventions such as social distancing and lockdown to slow down the spread of the pandemic. However, the effect of each of these measures remains hard to quantify. We design a multi-scale model that simulates the transmission dynamics of COVID-19. We describe the motion of individual agents using a social force model. Each agent can be either susceptible, infected, quarantined, immunized or deceased. The model considers both mechanisms of direct and indirect transmission. We parameterize the model to reproduce the early dynamics of disease spread in Italy. We show that panic situations increase the risk of infection transmission in crowds despite social distancing measures. Next, we reveal that pre-symptomatic transmission accelerates the onset of the exponential growth of cases. After that, we demonstrate that the persistence of SARS-CoV-2 on hard surfaces determines the number of cases reached during the peak of the epidemic. Then, we show that the restricted movement of the individuals flattens the epidemic curve. Finally, model predictions suggest that measures stricter than social distancing and lockdown were used to control the epidemic in Wuhan, China.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

No external funding.

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The entire set of equations and parameter values used is presented in the article. The used code to generate the results can be obtained at: https://github.com/MPS7/SIM-CoV

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted June 04, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A hybrid multi-scale model of COVID-19 transmission dynamics to assess the potential of non-pharmaceutical interventions
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A hybrid multi-scale model of COVID-19 transmission dynamics to assess the potential of non-pharmaceutical interventions
Anass Bouchnita, Aissam Jebrane
medRxiv 2020.04.05.20054460; doi: https://doi.org/10.1101/2020.04.05.20054460
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A hybrid multi-scale model of COVID-19 transmission dynamics to assess the potential of non-pharmaceutical interventions
Anass Bouchnita, Aissam Jebrane
medRxiv 2020.04.05.20054460; doi: https://doi.org/10.1101/2020.04.05.20054460

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)