Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Understanding the CoVID-19 pandemic Curve through statistical approach

View ORCID ProfileIbrar ul Hassan Akhtar
doi: https://doi.org/10.1101/2020.04.06.20055426
Ibrar ul Hassan Akhtar
aDepartment of Meteorology, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ibrar ul Hassan Akhtar
  • For correspondence: ibrar.phd.ciit{at}gmail.com
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Current research is an attempt to understand the CoVID-19 pandemic curve through statistical approach of probability density function with associated skewness and kurtosis measures, change point detection and polynomial fitting to estimate infected population along with 30 days projection. The pandemic curve has been explored for above average affected countries, six regions and global scale during 64 days of 22nd January to 24th March, 2020. The global cases infection as well as recovery rate curves remained in the ranged of 0 – 9.89 and 0 – 8.89%, respectively. The confirmed cases probability density curve is high positive skewed and leptokurtic with mean global infected daily population of 6620. The recovered cases showed bimodal positive skewed curve of leptokurtic type with daily recovery of 1708. The change point detection helped to understand the CoVID-19 curve in term of sudden change in term of mean or mean with variance. This pointed out disease curve is consist of three phases and last segment that varies in term of day lengths. The mean with variance based change detection is better in differentiating phases and associated segment length as compared to mean. Global infected population might rise in the range of 0.750 to 4.680 million by 24th April 2020, depending upon the pandemic curve progress beyond 24th March, 2020. Expected most affected countries will be USA, Italy, China, Spain, Germany, France, Switzerland, Iran and UK with at least infected population of over 0.100 million. Infected population polynomial projection errors remained in the range of −78.8 to 49.0%.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

The author declare no financial competing interests.

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

Data and codes are available on reasonable request.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted April 08, 2020.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Understanding the CoVID-19 pandemic Curve through statistical approach
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Understanding the CoVID-19 pandemic Curve through statistical approach
Ibrar ul Hassan Akhtar
medRxiv 2020.04.06.20055426; doi: https://doi.org/10.1101/2020.04.06.20055426
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Understanding the CoVID-19 pandemic Curve through statistical approach
Ibrar ul Hassan Akhtar
medRxiv 2020.04.06.20055426; doi: https://doi.org/10.1101/2020.04.06.20055426

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)