Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Gaussian Statistics and Data-Assimilated Model of Mortality due to COVID-19: China, USA, Italy, Spain, UK, Iran, and the World Total

T.-W. Lee, J.E. Park, David Hung
doi: https://doi.org/10.1101/2020.04.06.20055640
T.-W. Lee
1Mechanical and Aerospace Engineering, SEMTE, Arizona State University, Tempe, AZ 85287-6106
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: attwl{at}asu.edu
J.E. Park
1Mechanical and Aerospace Engineering, SEMTE, Arizona State University, Tempe, AZ 85287-6106
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Hung
2Mechanical Engineering, Shaghai Jiatong University, Shanghia, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

ABSTRACT

Covid-19 is characterized by rapid transmission and severe symptoms, leading to deaths in some cases (ranging from 1.5 to 12% of the affected, depending on the country). We identify the Gaussian nature of mortality due to covid-19, as shown in China where it appears to have run its course (during the first sweep of the pandemic at least) and other coutnries, and also in Imperial College modeling. Gaussian distribution involves three parameters, the height, peak location and the width, and the streaming data can be used to infer function value, slope and inflection location as a minimum set of constraints to estimate the subsequent trajectories. Thus, we apply the Gaussian function template as the basis for a data-assimilated model of covid-19 trajectories, first to USA, United Kingdom (UK), Iran and the world total in this study. As more data become available, the Gaussian trajectories are updated, for other nations and also for state-by-state projections in USA.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

No funding was applicable for this work.

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The data have been obtained from a public source (Ref 1). Our own analysis data are available upon request (attwl{at}asu.edu), and will be posted online after a website is set up.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted April 11, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Gaussian Statistics and Data-Assimilated Model of Mortality due to COVID-19: China, USA, Italy, Spain, UK, Iran, and the World Total
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Gaussian Statistics and Data-Assimilated Model of Mortality due to COVID-19: China, USA, Italy, Spain, UK, Iran, and the World Total
T.-W. Lee, J.E. Park, David Hung
medRxiv 2020.04.06.20055640; doi: https://doi.org/10.1101/2020.04.06.20055640
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Gaussian Statistics and Data-Assimilated Model of Mortality due to COVID-19: China, USA, Italy, Spain, UK, Iran, and the World Total
T.-W. Lee, J.E. Park, David Hung
medRxiv 2020.04.06.20055640; doi: https://doi.org/10.1101/2020.04.06.20055640

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)