Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Is the impact of social distancing on coronavirus growth rates effective across different settings? A non-parametric and local regression approach to test and compare the growth rate

View ORCID ProfileNeil Lancastle
doi: https://doi.org/10.1101/2020.04.07.20049049
Neil Lancastle
Faculty of Business and Law, De Montfort University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Neil Lancastle
  • For correspondence: neil.lancastle{at}dmu.ac.uk
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Epidemiologists use mathematical models to predict epidemic trends, and these results are inherently uncertain when parameters are unknown or changing. In other contexts, such as climate, modellers use multi-model ensembles to inform their decision-making: when forecasts align, modellers can be more certain. This paper looks at a sub-set of alternative epidemiological models that focus on the growth rate, and it cautions against relying on the method proposed in (Pike & Saini, 2020): relying on the data for China to calculate future trajectories is likely to be subject to overfitting, a common problem in financial and economic modelling. This paper finds, surprisingly, that the data for China are double-exponential, not exponential; and that different countries are showing a range of different trajectories. The paper proposes using non-parametric and local regression methods to support epidemiologists and policymakers in assessing the relative effectiveness of social distancing policies. All works contained herein are provided free to use worldwide by the author under CC BY 2.0.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

No external funding

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The data were taken from the Humanitarian Data Exchange (Humanitarian Data Exchange, 2020) and, prior to 22nd January 2020 for China, from China’s National Health Commission (National Health Commission, 2020). The R scripts used to run the tests are shown in Appendix 2. All works contained herein are provided free to use worldwide by the author under CC BY 2.0

https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted April 10, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Is the impact of social distancing on coronavirus growth rates effective across different settings? A non-parametric and local regression approach to test and compare the growth rate
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Is the impact of social distancing on coronavirus growth rates effective across different settings? A non-parametric and local regression approach to test and compare the growth rate
Neil Lancastle
medRxiv 2020.04.07.20049049; doi: https://doi.org/10.1101/2020.04.07.20049049
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Is the impact of social distancing on coronavirus growth rates effective across different settings? A non-parametric and local regression approach to test and compare the growth rate
Neil Lancastle
medRxiv 2020.04.07.20049049; doi: https://doi.org/10.1101/2020.04.07.20049049

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Economics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)