Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Public policy and economic dynamics of COVID-19 spread: a mathematical modeling study

View ORCID ProfileUri Goldsztejn, View ORCID ProfileDavid Schwartzman, View ORCID ProfileArye Nehorai
doi: https://doi.org/10.1101/2020.04.13.20062802
Uri Goldsztejn
1Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, 63130, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Uri Goldsztejn
David Schwartzman
2Washington University in St. Louis, Olin School of Business, St. Louis, 63130, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for David Schwartzman
Arye Nehorai
3Washington University in St. Louis, Department of Electrical and Systems Engineering, St. Louis, 63130, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Arye Nehorai
  • For correspondence: nehorai{at}wustl.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

With the COVID-19 pandemic infecting millions of people, large-scale isolation policies have been enacted across the globe. To assess the impact of isolation measures on deaths, hospitalizations, and economic output, we create a mathematical model to simulate the spread of COVID-19, incorporating effects of restrictive measures and segmenting the population based on health risk and economic vulnerability. Policymakers make isolation policy decisions based on current levels of disease spread and economic damage. For 76 weeks in a population of 330 million, we simulate a baseline scenario leaving strong isolation restrictions in place, rapidly reducing isolation restrictions for non-seniors shortly after outbreak containment, and gradually relaxing isolation restrictions for non-seniors. We used 76 weeks as an approximation of the time at which a vaccine will be available. In the baseline scenario, there are 235,724 deaths and the economy shrinks by 34.0%. With a rapid relaxation, a second outbreak takes place, with 525,558 deaths, and the economy shrinks by 32.3%. With a gradual relaxation, there are 262,917 deaths, and the economy shrinks by 29.8%. We also show that hospitalizations, deaths, and economic output are quite sensitive to disease spread by asymptomatic people. Strict restrictions on seniors with very gradual lifting of isolation for non-seniors results in a limited number of deaths and lesser economic damage. Therefore, we recommend this strategy and measures that reduce non-isolated disease spread to control the pandemic while making isolation economically viable.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

No specific funding was used for this work.

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The source code will be uploaded upon acceptance for publication.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted September 06, 2020.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Public policy and economic dynamics of COVID-19 spread: a mathematical modeling study
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Public policy and economic dynamics of COVID-19 spread: a mathematical modeling study
Uri Goldsztejn, David Schwartzman, Arye Nehorai
medRxiv 2020.04.13.20062802; doi: https://doi.org/10.1101/2020.04.13.20062802
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Public policy and economic dynamics of COVID-19 spread: a mathematical modeling study
Uri Goldsztejn, David Schwartzman, Arye Nehorai
medRxiv 2020.04.13.20062802; doi: https://doi.org/10.1101/2020.04.13.20062802

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)