Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Machine learning algorithm for early mortality prediction in patients with advanced penile cancer

Robert Chen, Matthew R Kudelka, Aaron M Rosado, James Zhang
doi: https://doi.org/10.1101/2020.04.22.20074955
Robert Chen
1Emory University School of Medicine
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: rchen25{at}emory.edu
Matthew R Kudelka
1Emory University School of Medicine
MD, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Aaron M Rosado
1Emory University School of Medicine
BS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James Zhang
1Emory University School of Medicine
MD, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

ABSTRACT

Penile cancer remains a rare cancer with an annual incidence of 1 in 100,000 men in the United States, accounting for 0.4-0.6% of all malignancies. Furthermore, to date there are no predictive models of early mortality in penile cancer. Meanwhile, machine learning has potential to serve as a prognostic tool for patients with advanced disease.

We developed a machine learning model for predicting early mortality in penile cancer (survival less than 11 months after initial diagnosis. A cohort of 88 patients with advanced penile cancer was extracted from the Surveillance, Epidemiology and End Results (SEER) program. In the cohort, patients with advanced penile cancer exhibited a median overall survival of 21 months, with the 25th percentile of overall survival being 11 months. We constructed predictive features based on patient demographics, staging, metastasis, lymph node biopsy criteria, and metastatic sites. We trained a multivariate logistic regression model, tuning parameters with respect to regularization, and feature selection criteria.

Upon evaluation with 5-fold cross validation, our model achieved 68.2% accuracy with AUC 0.696. Criteria for advanced staging (T4, group stage IV), as well as higher age, white race and squamous cell histology, were the most predictive of early mortality. Tumor size was the strongest negative predictor of early mortality.

Our study showcases the first known predictive model for early mortality in patients with advanced penile cancer and should serve as a framework for approaching the clinical problem in future studies. Future work should aim to incorporate other data sources such as genomic and metabolomic data, increase patient counts, incorporate clinical characteristics such as ECOG and RECIST criteria, and assess the performance of the model in a prospective fashion.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

N/A

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

Public data were used.

https://seer.cancer.gov/

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted May 05, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Machine learning algorithm for early mortality prediction in patients with advanced penile cancer
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Machine learning algorithm for early mortality prediction in patients with advanced penile cancer
Robert Chen, Matthew R Kudelka, Aaron M Rosado, James Zhang
medRxiv 2020.04.22.20074955; doi: https://doi.org/10.1101/2020.04.22.20074955
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Machine learning algorithm for early mortality prediction in patients with advanced penile cancer
Robert Chen, Matthew R Kudelka, Aaron M Rosado, James Zhang
medRxiv 2020.04.22.20074955; doi: https://doi.org/10.1101/2020.04.22.20074955

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Oncology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)