Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Detection of COVID-19 Infection from Routine Blood Exams with Machine Learning: a Feasibility Study

Davide Brinati, Andrea Campagner, View ORCID ProfileDavide Ferrari, Massimo Locatelli, View ORCID ProfileGiuseppe Banfi, View ORCID ProfileFederico Cabitza
doi: https://doi.org/10.1101/2020.04.22.20075143
Davide Brinati
1Università degli Studi di Milano-Bicocca
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrea Campagner
1Università degli Studi di Milano-Bicocca
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Davide Ferrari
2Università degli Studi di Parma
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Davide Ferrari
Massimo Locatelli
3Ospedale San Raffaele
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Giuseppe Banfi
4Università Vita e Salute San Raffaele Milano
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Giuseppe Banfi
Federico Cabitza
1Università degli Studi di Milano-Bicocca
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Federico Cabitza
  • For correspondence: federico.cabitza{at}unimib.it
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Article usage

Article usage: April 2020 to August 2025

AbstractFullPdf
Apr 20205990206
May 20206590298
Jun 20203940184
Jul 20206560169
Aug 2020537099
Sep 2020571089
Oct 2020618096
Nov 2020563099
Dec 2020484984
Jan 2021412732
Feb 2021266026
Mar 2021282537
Apr 2021292845
May 2021211620
Jun 2021154716
Jul 202190713
Aug 20211421243
Sep 202181221
Oct 2021127414
Nov 20211361127
Dec 202185217
Jan 202276925
Feb 202250210
Mar 202253321
Apr 202244514
May 202268110
Jun 202237130
Jul 202251014
Aug 20222529
Sep 202233012
Oct 20224427
Nov 20221317
Dec 202227012
Jan 20232478
Feb 20232758
Mar 202327536
Apr 202325213
May 202317315
Jun 202312510
Jul 20231032
Aug 2023231311
Sep 20231843
Oct 20234505
Nov 202347176
Dec 20231404
Jan 2024604
Feb 20241837
Mar 20242113
Apr 20241646
May 202417517
Jun 202415312
Jul 202411412
Aug 202417111
Sep 20241657
Oct 20241357
Nov 202418311
Dec 202416113
Jan 202513621
Feb 20251413
Mar 2025391013
Apr 202518816
May 202516911
Jun 2025441150
Jul 2025221565
Aug 2025205
Back to top
PreviousNext
Posted April 25, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Detection of COVID-19 Infection from Routine Blood Exams with Machine Learning: a Feasibility Study
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Detection of COVID-19 Infection from Routine Blood Exams with Machine Learning: a Feasibility Study
Davide Brinati, Andrea Campagner, Davide Ferrari, Massimo Locatelli, Giuseppe Banfi, Federico Cabitza
medRxiv 2020.04.22.20075143; doi: https://doi.org/10.1101/2020.04.22.20075143
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Detection of COVID-19 Infection from Routine Blood Exams with Machine Learning: a Feasibility Study
Davide Brinati, Andrea Campagner, Davide Ferrari, Massimo Locatelli, Giuseppe Banfi, Federico Cabitza
medRxiv 2020.04.22.20075143; doi: https://doi.org/10.1101/2020.04.22.20075143

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)