Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Deep neural frameworks improve the accuracy of general practitioners in the classification of pigmented skin lesions

Maximiliano Lucius, Jorge De All, José Antonio De All, Martín Belvisi, Luciana Radizza, Marisa Lanfranconi, Victoria Lorenzatti, Carlos M. Galmarini
doi: https://doi.org/10.1101/2020.05.03.20072454
Maximiliano Lucius
1Topazium Artificial Intelligence, Madrid, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jorge De All
2Sanatorio Otamendi, Buenos Aires, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
José Antonio De All
2Sanatorio Otamendi, Buenos Aires, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martín Belvisi
1Topazium Artificial Intelligence, Madrid, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Luciana Radizza
3IOSFA, Buenos Aires, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marisa Lanfranconi
2Sanatorio Otamendi, Buenos Aires, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Victoria Lorenzatti
2Sanatorio Otamendi, Buenos Aires, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carlos M. Galmarini
1Topazium Artificial Intelligence, Madrid, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: cmgalmarini{at}topazium.com
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Article usage

Article usage: May 2020 to August 2025

AbstractFullPdf
May 2020390075
Jun 2020126046
Jul 202061052
Aug 202058071
Sep 202051077
Oct 202039070
Nov 202035056
Dec 202037163
Jan 2021153461
Feb 2021179456
Mar 2021851333
Apr 2021726120
May 202175864
Jun 202162417
Jul 202127616
Aug 202136722
Sep 202129934
Oct 202128618
Nov 202121721
Dec 202120617
Jan 202221813
Feb 202235418
Mar 202226517
Apr 202220522
May 202222516
Jun 20221777
Jul 2022928
Aug 202226614
Sep 202237711
Oct 202220412
Nov 20221275
Dec 202214318
Jan 20232349
Feb 202321510
Mar 20231332
Apr 20231627
May 20231839
Jun 20231468
Jul 2023315
Aug 2023141810
Sep 20231457
Oct 2023728
Nov 202320107
Dec 20231014
Jan 202431424
Feb 2024947
Mar 20246014
Apr 202491211
May 202410413
Jun 20241135
Jul 20241026
Aug 20241147
Sep 2024844
Oct 20241278
Nov 2024823
Dec 2024858
Jan 2025629
Feb 20258259
Mar 202518348
Apr 2025152415
May 2025182811
Jun 2025221615
Jul 2025211817
Aug 2025412
Back to top
PreviousNext
Posted May 08, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Deep neural frameworks improve the accuracy of general practitioners in the classification of pigmented skin lesions
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Deep neural frameworks improve the accuracy of general practitioners in the classification of pigmented skin lesions
Maximiliano Lucius, Jorge De All, José Antonio De All, Martín Belvisi, Luciana Radizza, Marisa Lanfranconi, Victoria Lorenzatti, Carlos M. Galmarini
medRxiv 2020.05.03.20072454; doi: https://doi.org/10.1101/2020.05.03.20072454
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Deep neural frameworks improve the accuracy of general practitioners in the classification of pigmented skin lesions
Maximiliano Lucius, Jorge De All, José Antonio De All, Martín Belvisi, Luciana Radizza, Marisa Lanfranconi, Victoria Lorenzatti, Carlos M. Galmarini
medRxiv 2020.05.03.20072454; doi: https://doi.org/10.1101/2020.05.03.20072454

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Dermatology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)