Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Predictors of COVID-19 incidence, mortality, and epidemic growth rate at the country level

Nicole Y. Leung, Michelle A. Bulterys, Philip L. Bulterys
doi: https://doi.org/10.1101/2020.05.15.20101097
Nicole Y. Leung
1Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michelle A. Bulterys
2International Clinical Research Center and Departments of Epidemiology and Global Health, University of Washington, Seattle, WA 98195, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philip L. Bulterys
3Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: bulterys{at}stanford.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

ABSTRACT

Background The burden of the coronavirus disease 2019 (COVID-19) pandemic has been geographically disproportionate. Certain weather factors and population characteristics are thought to drive transmission, but studies examining these factors are limited. We aimed to identify weather, sociodemographic, and geographic drivers of COVID-19 at the global scale using a comprehensive collection of country/territory-level data, and to use discovered associations to estimate the timing of community transmission.

Methods We examined COVID-19 cases and deaths reported up to May 2, 2020 across 205 countries and territories in relation to weather data collected from capital cities for the eight weeks prior to and four weeks after the date of the first reported case, as well as country/territory-level population, geographic, and planetary data. We performed univariable and multivariable regression modeling and odds ratio analyses to investigate associations with COVID-19 cases, deaths, and epidemic growth rate. We also conducted maximum likelihood analysis to estimate the timing of initial community spread.

Findings Lower temperature (p<0.0001), lower humidity (p=0.006), higher altitude (p=0.0080), higher percentage of urban population (p<0.0001), increased air travelers (p=0.00019), and higher prevalence of obesity (p<0.0001) were strong independent predictors of national COVID-19 incidence, mortality, and epidemic growth rate. Temperature at 5–7 weeks before the first reported case best predicted epidemic growth, suggesting that significant community transmission was occurring on average 1–2 months prior to detection.

Conclusions The results of this ecologic analysis demonstrate that global COVID-19 burden and timing of country-level epidemic growth can be predicted by weather and population factors. In particular, we find that cool, dry, and higher altitude environments, as well as more urban and obese populations, may be conducive to more rapid epidemic spread.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

None.

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

Data referred to in this manuscript will be made publicly available at the time of peer-reviewed publication.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted May 19, 2020.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Predictors of COVID-19 incidence, mortality, and epidemic growth rate at the country level
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Predictors of COVID-19 incidence, mortality, and epidemic growth rate at the country level
Nicole Y. Leung, Michelle A. Bulterys, Philip L. Bulterys
medRxiv 2020.05.15.20101097; doi: https://doi.org/10.1101/2020.05.15.20101097
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Predictors of COVID-19 incidence, mortality, and epidemic growth rate at the country level
Nicole Y. Leung, Michelle A. Bulterys, Philip L. Bulterys
medRxiv 2020.05.15.20101097; doi: https://doi.org/10.1101/2020.05.15.20101097

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Public and Global Health
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)