Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

A data first approach to modelling Covid-19

Jayanti Prasad
doi: https://doi.org/10.1101/2020.05.22.20110171
Jayanti Prasad
1Khagol-20, 38/1, Panchavti, Pashan, Pune (India) - 411008
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: prasad.jayanti{at}gmail.com
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

The primary data for Covid-19 pandemic is in the form of time series for the number of confirmed, recovered and dead cases. This data is updated every day and is available for most countries from multiple sources such as [Gar20b, iD20]. In this work we present a two step procedure for model fitting to Covid-19 data. In the first step, time dependent transmission coefficients are constructed directly from the data and, in the second step, measures of those (minimum, maximum, mean, median etc.,) are used to set priors for fitting models to data. We call this approach a “data driven approach” or “data first approach”. This scheme is complementary to Bayesian approach and can be used with or without that for parameter estimation. We use the procedure to fit a set of SIR and SIRD models, with time dependent contact rate, to Covid-19 data for a set of most affected countries. We find that SIR and SIRD models with constant transmission coefficients cannot fit Covid-19 data for most countries (mainly because social distancing, lockdown etc., make those time dependent). We find that any time dependent contact rate decaying with time can help to fit SIR and SIRD models for most of the countries. We also present constraints on transmission coefficients and basic reproduction number Embedded Image, as well as effective reproduction number Embedded Image. The main contributions of our work are as follows. (1) presenting a two step procedure for model fitting to Covid-19 data (2) constraining transmission coefficients as well as Embedded Image and Embedded Image, for a set of countries and (3) releasing a python package PyCov19 [Pra20b] that can used to fit a class of compartmental models, with time varying coefficients, to Covid-19 data.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

The work presented here is not funded by any public or private agency.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

As author understand no such approval or exemption is needed for the present work.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All the data as well the code used in the work is available from the GitHub page of the author.

https://github.com/jayanti-prasad/PyCov19

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted June 02, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A data first approach to modelling Covid-19
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A data first approach to modelling Covid-19
Jayanti Prasad
medRxiv 2020.05.22.20110171; doi: https://doi.org/10.1101/2020.05.22.20110171
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A data first approach to modelling Covid-19
Jayanti Prasad
medRxiv 2020.05.22.20110171; doi: https://doi.org/10.1101/2020.05.22.20110171

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)