Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Augmenting contact matrices with time-use data for fine-grained intervention modelling of disease dynamics: A modelling analysis

View ORCID ProfileEdwin van Leeuwen, PHE Joint modelling group, View ORCID ProfileFrank Sandmann
doi: https://doi.org/10.1101/2020.06.03.20067793
Edwin van Leeuwen
aStatistics, Modelling and Economics Department, Public Health England, London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Edwin van Leeuwen
  • For correspondence: edwinvanl{at}tuta.io
Frank Sandmann
aStatistics, Modelling and Economics Department, Public Health England, London, UK
bDepartment of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Frank Sandmann
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Background Social distancing is an important public health intervention to reduce or interrupt the sustained community transmission of emerging infectious pathogens, such as SARS-CoV-2 during the coronavirus disease 2019 (COVID-19) pandemic. We aimed to explore the impact on the epidemic curve of fewer contacts when individuals reduce the time they spend on selected daily activities.

Methods We combined the large-scale empirical data of a social contact survey and a time-use survey to estimate contact matrices by age group (0-15, 16-24, 25-44, 45-64, 65+) and daily activity (work, schooling, transportation, and four leisure activities: social visits, bar/cafe/restaurant visits, park visits, and non-essential shopping). We assumed that reductions in time are proportional to reductions in contacts. The derived matrices were then applied in an age-structured dynamic-transmission model of COVID-19 to explore the effects.

Findings The relative reductions in the derived contact matrices were highest when closing schools (in ages 0-14 years), workplaces (15-64 years), and stopping social visits (65+ years). For COVID-19, the closure of workplaces, schools, and stopping social visits had the largest impact on reducing the epidemic curve and delaying its peak, while the predicted impact of fewer contacts in parks, bars/cafes/restaurants, and non-essential shopping were minimal.

Interpretation We successfully augmented contact matrices with time-use data to predict the highest impact of social distancing measures from reduced contacts when spending less time at work, school, and on social visits. Although the predicted impact from other leisure activities with potential for close physical contact were minimal, changes in mixing patterns and time-use immediately after re-allowing social activities may pose increased short-term transmission risks, especially in potentially crowded environments indoors.

Evidence before this study We searched PubMed for mathematical models using social contact matrices and time-use data to explore the impact of reduced social contacts as seen from social distancing measures adopted during the coronavirus disease 2019 (COVID-19) pandemic with the search string ((social OR physical) AND distancing) OR (contact* OR (contact matri*)) AND (time-use) AND (model OR models OR modeling OR modelling) from inception to May 06, 2020, with no language restrictions. We found several studies that used time-use data to re-create contact matrices based on time spent in similar locations or to calculate the length of exposure. We identified no study that augmented social contact matrices with time-use data to estimate the impact on transmission dynamics of reducing selected social activities and lifting these restrictions again, as seen during the COVID-19 pandemic.

Added value of this study Our study combines the empirical data of two large-scale, representative surveys to derive social contact matrices that enrich the frequency of contacts with the duration of exposure for selected social activities, which allows for more fine-grained mixing patterns and infectious disease modelling. We successfully applied the resulting matrices to estimate reductions in contacts from social distancing measures such as adopted during the COVID-19 pandemic, as well as the effect on the epidemic curve from increased social contacts when lifting such restrictions again.

Implications of all the available evidence Social distancing measures are an important public health intervention to limit the close-contact transmission of emerging infectious pathogens by reducing the social mixing of individuals. Our model findings suggest a higher fraction of close-contact transmission occurs at work, schools, and social visits than from visits to parks, bars/cafes/restaurants, and non-essential shopping. The minimal predicted impact is suggestive of lifting the restrictions on certain activities and excluding them from the list of social distancing measures, unless required to maintain sufficient healthcare capacity. However, potential replacement effects of activities and in mixing patterns remain unclear, particularly immediately after re-allowing social activities again.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

No external funding was received for this work.

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data has been published before.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted June 05, 2020.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Augmenting contact matrices with time-use data for fine-grained intervention modelling of disease dynamics: A modelling analysis
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Augmenting contact matrices with time-use data for fine-grained intervention modelling of disease dynamics: A modelling analysis
Edwin van Leeuwen, PHE Joint modelling group, Frank Sandmann
medRxiv 2020.06.03.20067793; doi: https://doi.org/10.1101/2020.06.03.20067793
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Augmenting contact matrices with time-use data for fine-grained intervention modelling of disease dynamics: A modelling analysis
Edwin van Leeuwen, PHE Joint modelling group, Frank Sandmann
medRxiv 2020.06.03.20067793; doi: https://doi.org/10.1101/2020.06.03.20067793

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Public and Global Health
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)