Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Human chromosomal-scale length variation and severity of COVID-19 infection using the UK Biobank dataset

Chris Toh, View ORCID ProfileJames P. Brody
doi: https://doi.org/10.1101/2020.07.06.20147637
Chris Toh
1Department of Biomedical Engineering, University of California, Irvine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James P. Brody
1Department of Biomedical Engineering, University of California, Irvine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for James P. Brody
  • For correspondence: jpbrody{at}uci.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Introduction The course of COVID-19 varies from asymptomatic to severe (acute respiratory distress, cytokine storms, and death) in patients. The basis for this range in symptoms is unknown. One possibility is that genetic variation is responsible for the highly variable response to infection. We evaluated how well a genetic risk score based on chromosome-scale length variation and machine learning classification algorithms could predict severity of response to SARS-CoV-2 infection.

Methods We compared 981 patients from the UK Biobank dataset who had a severe reaction to SARS-COV-2 infection before 27 April 2020 to a similar number of age matched patients drawn for the general UK Biobank population. For each patient, we built a profile of 88 numbers characterizing the chromosome-scale length variability of their germ line DNA. Each number represented one quarter of the 22 autosomes. We used the machine learning algorithm XGBoost to build a classifier that could predict whether a person would have a severe reaction to Covid-19 based only on their 88-number classification.

Results We found that the XGBoost classifier could differentiate between the two classes at a significant level p = 2 · 10 as measured against a randomized control and p = 3 · 10 measured against the expected value of a random guessing algorithm (AUC=0.5). However, we found that the AUC of the classifier was only 0.51, too low for a clinically useful test.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

No external funding was received for this work.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

This data uses previously collected data from UK Biobank. The original consent was obtained by UK Biobank. Our analysis of the de-identified data has been examined by UC Irvine's IRB. They ruled that our research is not considered "human subjects research" because it uses de-identified data.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The original data can be obtained from the UK Biobank.

https://www.ukbiobank.ac.uk/

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted July 07, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Human chromosomal-scale length variation and severity of COVID-19 infection using the UK Biobank dataset
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Human chromosomal-scale length variation and severity of COVID-19 infection using the UK Biobank dataset
Chris Toh, James P. Brody
medRxiv 2020.07.06.20147637; doi: https://doi.org/10.1101/2020.07.06.20147637
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Human chromosomal-scale length variation and severity of COVID-19 infection using the UK Biobank dataset
Chris Toh, James P. Brody
medRxiv 2020.07.06.20147637; doi: https://doi.org/10.1101/2020.07.06.20147637

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetic and Genomic Medicine
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)