Abstract
As communities reopen following shelter-in-place orders, they are facing two conflicting objectives. The first is to keep the COVID-19 fatality rate down. The second is to revive the U.S. economy and the livelihood of millions of Americans. In this paper, a team of researchers from the Center on Stochastic Modeling, Optimization, & Statistics (COSMOS) at the University of Texas at Arlington, in collaboration with researchers from University of Texas Southwestern Medical Center and Harvard Medical School, has formulated a computationally-efficient optimization framework, referred to as COSMOS COVID-19 Linear Programming (CC19LP), to study the delicate balance between the expected fatality rate and the level of normalcy in the community. Given the disproportionate fatality characteristics of COVID-19 among those in different age groups or with an underlying medical condition or those living with crowding, the key to the CC19LP framework is a focus on “key contacts” that separate individuals at higher risk from the rest of the population. The philosophy of CC19LP lies in maximizing protection of key contacts, so as to shield high-risk individuals from infection. Given the lack of pharmaceutical solutions, i.e., a vaccine or cure, the CC19LP framework minimizes expected fatalities by optimizing the use of non-pharmaceutical interventions, namely COVID-19 testing; personal protective equipment; and social precautions, such as distancing, hand-washing, and face coverings. Low-risk individuals that are not key contacts, including most children, are unrestricted and can choose to participate in pre-pandemic normal activities, which eliminates the need for compliance across the entire population. Consequently, the CC19LP framework demonstrates optimal strategies for protecting high-risk individuals while reopening communities.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
N/A
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB not applicable.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
An online tool for the optimization has been developed by the authors and is publicly available. Data on COVID-19 cases and fatalities were obtained from a publicly available website. Data for the optimization were generated via publicly available Census data and a Gallup poll.
https://cosmos.uta.edu/projects/covid-19/
https://ourworldindata.org/coronavirus
https://www.census.gov/data.html
https://news.gallup.com/poll/304643/million-severe-risk-infected-covid.aspx