Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Forecasting daily COVID-19 confirmed, deaths and recovered cases using univariate time series models: A case of Pakistan study

Hasnain Iftikhar, Moeeba Rind
doi: https://doi.org/10.1101/2020.09.20.20198150
Hasnain Iftikhar
1Department of Statistics, Quaid-i-Azam university Islamabad, Pakistan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: hasnainchill3{at}gmail.com
Moeeba Rind
2Department of Psychology, University of Peshawar, Pakistan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

The increasing confirmed cases and death counts of Coronavirus disease 2019 (COVID-19) in Pakistan has disturbed not only the health sector, but also all other sectors of the country. For precise policy making, accurate and efficient forecasts of confirmed cases and death counts are important. In this work, we used five different univariate time series models including; Autoregressive (AR), Moving Average (MA), Autoregressive Moving Average (ARMA), Nonparametric Autoregressive (NPAR) and Simple Exponential Smoothing (SES) models for forecasting confirmed, death and recovered cases. These models were applied to Pakistan COVID-19 data, covering the period from 10, March to 3, July 2020. To evaluate models accuracy, computed two standard mean errors such as Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The findings show that the time series models are useful in predicting COVID-19 confirmed, deaths and recovered cases. Furthermore, MA model outperformed the rest of all models for confirmed and deaths counts prediction, while ARMA is second best model. The SES model seems superior to other models for prediction of recovered counts, however MA is competitive. On the basis of best selected models, we forecast form 4th July to 14th August, 2020, which will be helpful for decision making of public health and other sectors of Pakistan.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This research received no external funding.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

This work does not need any approval of the IRB.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

We used daily COVID-19 conformed, deaths, and recovered cases for Pakistan. The dataset was obtained by WHO, the each series ranges from 10, March 2020 to 3, July 2020.

https://www.who.int/

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted September 22, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Forecasting daily COVID-19 confirmed, deaths and recovered cases using univariate time series models: A case of Pakistan study
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Forecasting daily COVID-19 confirmed, deaths and recovered cases using univariate time series models: A case of Pakistan study
Hasnain Iftikhar, Moeeba Rind
medRxiv 2020.09.20.20198150; doi: https://doi.org/10.1101/2020.09.20.20198150
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Forecasting daily COVID-19 confirmed, deaths and recovered cases using univariate time series models: A case of Pakistan study
Hasnain Iftikhar, Moeeba Rind
medRxiv 2020.09.20.20198150; doi: https://doi.org/10.1101/2020.09.20.20198150

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Policy
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)