ABSTRACT
Background Magnetic resonance spectroscopic imaging (MRSI) is a neuroimaging technique that can be used to noninvasively map brain temperature (i.e., thermometry) over a large brain volume. To date, intra-subject reproducibility of MRSI-based brain temperature (MRSI-t) has not been investigated. The objective of this repeated measures MRSI-t study was to establish intra-subject reproducibility and repeatability of brain temperature, as well as typical brain temperature range.
Methods Healthy participants aged 23-46 years (N=18; 7 females) were scanned at two time points, ∼12-weeks apart. Volumetric MRSI data were processed by reconstructing metabolite and water images using parametric spectral analysis. Brain temperature was derived using the frequency difference between water and creatine (TCRE) for 47 regions of interest (ROIs) delineated by the modified Automated Anatomical Labeling (AAL) atlas. Reproducibility was measured using the coefficient of variation for repeated measures (COVrep), and repeatability was determined using the standard error of measurement (SEM). For each region, the upper and lower bounds of Minimal Detectable Change (MDC) were established to characterize the typical range of TCRE values.
Results The mean global brain temperature over all subjects was 37.2°C, with spatial variations across ROIs. There was a significant main effect for time (F(1, 1591)=37.0, p < 0.0001) and for brain region (F(46, 1591)=2.66, p<0.0001). The time*brain region interaction was not significant (F(46, 1591)=0.80, p=0.83)). Participants’ TCRE was stable for each ROI across both time points, with ROIs’ COVrep ranging from 0.81 – 3.08% (mean COVrep = 1.92%); 30 ROIs had a COVrep < 2.0%.
Conclusions Brain temperature demonstrated subtle regional variations that were highly consistent between both time points, indicating high reproducibility and repeatability of MRSI-t. MRSI-t may be a promising diagnostic, prognostic, and therapeutic tool for non-invasively monitoring pathological brain temperature changes when other modalities are unrevealing. However, further studies of healthy participants with larger sample size(s) and numerous repeated acquisitions are imperative for establishing a reference range of typical brain TCRE, as well as the threshold above which TCRE is likely pathological.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
State of Alabama General Fund ("Carly's Law") and the UAB Epilepsy Center supported this study. Ms. Sharma is currently supported by an institutional training grant (T32-NS061788-13) from the National Institute of Neurological Disorders and Stroke (NINDS).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
All study procedures were approved by the UAB Institutional Review Board. Written informed consent was obtained from all participants before initiating the protocol.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
De-identified data will be made available upon reasonable request with IRB and data sharing approvals in place.