Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Continuously-Encoded Deep Recurrent Networks for Interpretable Knowledge Tracing in Speech-Language and Cognitive Therapy

Ehsan Dadgar-Kiani, Veera Anantha
doi: https://doi.org/10.1101/2020.11.08.20206755
Ehsan Dadgar-Kiani
1Department of Bioengineering, Stanford University, Stanford, CA 94305
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: dadgarki{at}stanford.edu
Veera Anantha
2Constant Therapy Health, Newton, MA 02458
Ph.D
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Intelligent Tutoring Systems (ITS), developed over the last few decades, have been especially important in delivering online education. These systems use Knowledge Tracing (KT) to model a student’s understanding of concepts as they perform exercises. Recently, there have been several advancements using Recurrent Neural Networks (RNNs) to develop Deep Knowledge Tracing (DKT) that eliminates the need for manually encoding the student knowledge space. In online education, these models are crucial for predicting student performance and designing personalized curricula (sequence of courses and exercises). In this paper we develop a novel Knowledge Tracing model, called Continuously-encoded Deep Knowledge Tracing (CE-DKT) to automatically encode the user’s knowledge space, when the user’s skill in a given task is continuous-valued instead of binary. We then apply Knowledge tracing, specifically CE-DKT, to the context of digital therapy. Specifically, patients suffering from various neurological disorders such as aphasia, traumatic brain injury, or dementia are often prescribed speech, language and cognitive therapy exercises to perform from a set of predefined workbooks that are not personalized for the patient. We use CE-DKT to automatically encode a patient’s skill level across different tasks, and predict how the patient will perform on unseen tasks. We use data from the digital therapy platform, Constant Therapy, to train a CE-DKT model and demonstrate its high degree of accuracy in predicting a patient’s performance in a digital therapy application. We also demonstrate how to extract interpretable confidence intervals from this model and how to trace predictions to previous tasks using time-step level feature importance. Finally, we describe how this model can be applied to significantly enhance future digital therapy platforms and online student learning systems.

Competing Interest Statement

Both Authors are co-founders of Constant Therapy.

Funding Statement

No external funding was used for this research.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The retrospective data analysis conducted in this paper is covered under the Pearl IRB approval for the study: "Effectiveness of Constant Therapy, a software platform in rehabilitation for individuals with neurological deficits.”

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • veera.anantha{at}gmail.com

Data Availability

Data is not publicly accessible via a public URL. However the data can be requested by contacting the Aphasia Research Lab at Boston University.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted November 10, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Continuously-Encoded Deep Recurrent Networks for Interpretable Knowledge Tracing in Speech-Language and Cognitive Therapy
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Continuously-Encoded Deep Recurrent Networks for Interpretable Knowledge Tracing in Speech-Language and Cognitive Therapy
Ehsan Dadgar-Kiani, Veera Anantha
medRxiv 2020.11.08.20206755; doi: https://doi.org/10.1101/2020.11.08.20206755
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Continuously-Encoded Deep Recurrent Networks for Interpretable Knowledge Tracing in Speech-Language and Cognitive Therapy
Ehsan Dadgar-Kiani, Veera Anantha
medRxiv 2020.11.08.20206755; doi: https://doi.org/10.1101/2020.11.08.20206755

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)