Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

A room, a bar and a classroom: how the coronavirus is spread through the air depends on heavily mask filtration efficiency

Devabhaktuni Srikrishna
doi: https://doi.org/10.1101/2020.11.10.20227710
Devabhaktuni Srikrishna
Patient Knowhow, Inc
Roles: founder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: sri.devabhaktuni{at}gmail.com
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Background Recently the US CDC acknowledged by that the COVID-19 crisis is facilitated at least in part by aerosolized virus exhaled by symptomatic, asymptomatic, or pre-symptomatic infected individuals. Disposable N95 masks remain in short supply due to their use in healthcare settings during the Coronavirus pandemic, whereas NIOSH-approved elastomeric N95 (eN95) masks remain immediately available for use by essential workers and the general public. New reusable N95 mask options with symmetric filtration efficiency can be anticipated to be NIOSH approved in the coming months, today’s eN95 masks have asymmetric filtration efficiency upon inhalation (95%) and exhalation (well under 95%) but are available now during the Fall and Winter when Coronavirus cases are expected to peak.

Methods Based on the Wells-Riley model of infection risk, we examine how the rate of transmission of the virus from one infected person in a closed, congested room with poor ventilation to several other susceptible individuals is impacted by the filtration efficiency of the masks they are wearing. Three scenarios are modeled – a room (6 people, 12’ × 20’ × 10’), a bar (18 people, 20’ × 40’ × 10’), and a classroom (26 people, 20’ × 30’ × 10’) with one infectious individual and remaining susceptibles. By dynamically estimating the accumulation of virus in aerosols exhaled by the infected person in these congested spaces for four hours using a “box model,” we compare the transmission risk (probability) when susceptible people based on a realistic hypothesis of face mask protection during inhaling and exhaling e.g. using cloth masks or N95 respirators.

Results Across all three scenarios, cloth masks modeled with 30% symmetric filtration efficiency alone were insufficient to stop the spread (18% to 40% infection risk), whereas eN95 masks (modeled as 95% filtration efficiency on inhalation, 30% on exhalation) reduced the infection risk to 1.5% to 3.6%. Symmetric filtration of 80% reduces the risk to 1.7% to 4.1% and symmetric filtration of 95% would further reduce the risk to 0.11% to 0.26%.

Conclusion This modeling of mask filtration efficiency suggests that the pandemic could be readily controlled within several weeks if (in conjunction with sensible hygiene) a sufficiently large majority of people wear asymmetric but higher-filtration masks (e.g. eN95) that also block aerosols whenever exposed to anyone else outside their household in order to completely stop inter-household spread.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

No external funding was received for this research work.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

No IRB is required because there are no human subjects.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data used is available in the manuscript

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted November 13, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A room, a bar and a classroom: how the coronavirus is spread through the air depends on heavily mask filtration efficiency
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A room, a bar and a classroom: how the coronavirus is spread through the air depends on heavily mask filtration efficiency
Devabhaktuni Srikrishna
medRxiv 2020.11.10.20227710; doi: https://doi.org/10.1101/2020.11.10.20227710
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A room, a bar and a classroom: how the coronavirus is spread through the air depends on heavily mask filtration efficiency
Devabhaktuni Srikrishna
medRxiv 2020.11.10.20227710; doi: https://doi.org/10.1101/2020.11.10.20227710

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)