Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

A comparison of machine learning models versus clinical evaluation for mortality prediction in patients with sepsis

William P.T.M. van Doorn, View ORCID ProfilePatricia M. Stassen, Hella F. Borggreve, Maaike J. Schalkwijk, Judith Stoffers, Otto Bekers, Steven J.R. Meex
doi: https://doi.org/10.1101/2020.11.24.20237636
William P.T.M. van Doorn
1Department of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
2CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patricia M. Stassen
3Department of Internal Medicine, Division of General Internal Medicine, Section Acute Medicine, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
4CAPHRI School for Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Patricia M. Stassen
Hella F. Borggreve
3Department of Internal Medicine, Division of General Internal Medicine, Section Acute Medicine, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maaike J. Schalkwijk
3Department of Internal Medicine, Division of General Internal Medicine, Section Acute Medicine, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Judith Stoffers
3Department of Internal Medicine, Division of General Internal Medicine, Section Acute Medicine, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Otto Bekers
1Department of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
2CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Steven J.R. Meex
1Department of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
2CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: steven.meex{at}mumc.nl
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading
  • supporting information[supplements/237636_file02.docx]
Back to top
PreviousNext
Posted November 25, 2020.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A comparison of machine learning models versus clinical evaluation for mortality prediction in patients with sepsis
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A comparison of machine learning models versus clinical evaluation for mortality prediction in patients with sepsis
William P.T.M. van Doorn, Patricia M. Stassen, Hella F. Borggreve, Maaike J. Schalkwijk, Judith Stoffers, Otto Bekers, Steven J.R. Meex
medRxiv 2020.11.24.20237636; doi: https://doi.org/10.1101/2020.11.24.20237636
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A comparison of machine learning models versus clinical evaluation for mortality prediction in patients with sepsis
William P.T.M. van Doorn, Patricia M. Stassen, Hella F. Borggreve, Maaike J. Schalkwijk, Judith Stoffers, Otto Bekers, Steven J.R. Meex
medRxiv 2020.11.24.20237636; doi: https://doi.org/10.1101/2020.11.24.20237636

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)