Predicting Stress in Teens from Wearable Device Data Using Machine Learning Methods
Claire W. Jin, View ORCID ProfileAme Osotsi, View ORCID ProfileZita Oravecz
doi: https://doi.org/10.1101/2020.11.26.20223784
Claire W. Jin
∗State College Area High School, State College, PA 16801
Ame Osotsi
†Department of Statistics, The Pennsylvania State University, University Park, State College, PA 16802
Zita Oravecz
‡Department of Human Development and Family Studies, The Pennsylvania State University, University Park, State College, PA 16802

Data Availability
The data is hosted in the authors' in-house server. It will be available upon the publication of the manuscript.
Posted December 02, 2020.
Predicting Stress in Teens from Wearable Device Data Using Machine Learning Methods
Claire W. Jin, Ame Osotsi, Zita Oravecz
medRxiv 2020.11.26.20223784; doi: https://doi.org/10.1101/2020.11.26.20223784
Subject Area
Subject Areas
- Addiction Medicine (349)
- Allergy and Immunology (668)
- Allergy and Immunology (668)
- Anesthesia (181)
- Cardiovascular Medicine (2648)
- Dermatology (223)
- Emergency Medicine (399)
- Epidemiology (12228)
- Forensic Medicine (10)
- Gastroenterology (759)
- Genetic and Genomic Medicine (4103)
- Geriatric Medicine (387)
- Health Economics (680)
- Health Informatics (2657)
- Health Policy (1005)
- Hematology (363)
- HIV/AIDS (851)
- Medical Education (399)
- Medical Ethics (109)
- Nephrology (436)
- Neurology (3882)
- Nursing (209)
- Nutrition (577)
- Oncology (2030)
- Ophthalmology (585)
- Orthopedics (240)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1115)
- Primary Care Research (452)
- Public and Global Health (6527)
- Radiology and Imaging (1403)
- Respiratory Medicine (871)
- Rheumatology (409)
- Sports Medicine (342)
- Surgery (448)
- Toxicology (53)
- Transplantation (185)
- Urology (165)