Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Bias reduction and inference for electronic health record data under selection and phenotype misclassification: three case studies

View ORCID ProfileLauren J. Beesley, Bhramar Mukherjee
doi: https://doi.org/10.1101/2020.12.21.20248644
Lauren J. Beesley
1University of Michigan, Department of Biostatistics
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Lauren J. Beesley
  • For correspondence: lbeesley{at}umich.edu
Bhramar Mukherjee
1University of Michigan, Department of Biostatistics
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Electronic Health Records (EHR) are not designed for population-based research, but they provide access to longitudinal health information for many individuals. Many statistical methods have been proposed to account for selection bias, missing data, phenotyping errors, or other problems that arise in EHR data analysis. However, addressing multiple sources of bias simultaneously is challenging. Recently, we developed a methodological framework (R package, SAMBA) for jointly handling both selection bias and phenotype misclassification in the EHR setting that leverages external data sources. These methods assume factors related to selection and misclassification are fully observed, but these factors may be poorly understood and partially observed in practice. As a follow-up to the methodological work, we explore how these methods perform for three real-world case studies. In all three examples, we use individual patient-level data collected through the University of Michigan Health System and various external population-based data sources. In case study (a), we explore the impact of these methods on estimated associations between gender and cancer diagnosis. In case study (b), we compare corrected associations between previously identified genetic loci and age-related macular degeneration with gold standard external estimates. In case study (c), we evaluate these methods for modeling the association of COVID-19 outcomes and potential risk factors. These case studies illustrate how to utilize diverse auxiliary information to achieve less biased inference in EHR-based research.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work was supported by The University of Michigan Comprehensive Cancer Center core grant supplement 5P30-CA-046592, NSF DMS award 1712933 and The University of Michigan precision health award U067541.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

This research has been approved as part of the Michigan Augmented Genomics Initiative Collaborative (MAGIC) efforts under IRB HUM00155849, approved by the University of Michigan Medical School Institutional Review Board.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

Michigan Genomics Initiative data are available after institutional review board approval to select researchers. See https://precisionhealth.umich.edu/our-research/michigangenomics/ for details.

https://cran.r-project.org/web/packages/SAMBA/index.html

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted December 23, 2020.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Bias reduction and inference for electronic health record data under selection and phenotype misclassification: three case studies
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Bias reduction and inference for electronic health record data under selection and phenotype misclassification: three case studies
Lauren J. Beesley, Bhramar Mukherjee
medRxiv 2020.12.21.20248644; doi: https://doi.org/10.1101/2020.12.21.20248644
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Bias reduction and inference for electronic health record data under selection and phenotype misclassification: three case studies
Lauren J. Beesley, Bhramar Mukherjee
medRxiv 2020.12.21.20248644; doi: https://doi.org/10.1101/2020.12.21.20248644

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)