Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Retinal Age as a Predictive Biomarker for Mortality Risk

Zhuoting Zhu, Danli Shi, Guankai Peng, Zachary Tan, Xianwen Shang, Wenyi Hu, Huan Liao, Xueli Zhang, Yu Huang, Honghua Yu, Wei Meng, Wei Wang, Xiaohong Yang, Mingguang He
doi: https://doi.org/10.1101/2020.12.24.20248817
Zhuoting Zhu
1Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
MD PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Danli Shi
2State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guankai Peng
3Guangzhou Vision Tech Medical Technology Co., Ltd
BS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zachary Tan
4Centre for Eye Research Australia; Ophthalmology, University of Melbourne, Melbourne, Australia
MBBS, MMed, MMSc
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xianwen Shang
1Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wenyi Hu
1Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
MBBS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Huan Liao
5Neural Regeneration Group, Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xueli Zhang
1Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yu Huang
1Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
MD PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Honghua Yu
1Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
MD PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wei Meng
3Guangzhou Vision Tech Medical Technology Co., Ltd
BS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wei Wang
2State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
MD PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mingguang.he{at}unimelb.edu.au syyangxh{at}scut.edu.cn zoc_wangwei{at}yahoo.com
Xiaohong Yang
1Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
MD PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mingguang.he{at}unimelb.edu.au syyangxh{at}scut.edu.cn zoc_wangwei{at}yahoo.com
Mingguang He
1Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
2State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
4Centre for Eye Research Australia; Ophthalmology, University of Melbourne, Melbourne, Australia
6Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
MD PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mingguang.he{at}unimelb.edu.au syyangxh{at}scut.edu.cn zoc_wangwei{at}yahoo.com
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Background Ageing varies substantially, thus an accurate quantification of ageing is important. We developed a deep learning (DL) model that predicted age from fundus images (retinal age). We investigated the association between retinal age gap (retinal age-chronological age) and mortality risk in a population-based sample of middle-aged and elderly adults.

Methods The DL model was trained, validated and tested on 46,834, 15,612 and 8,212 fundus images respectively from participants of the UK Biobank study alive on 28th February 2018. Retinal age gap was calculated for participants in the test (n=8,212) and death (n=1,117) datasets. Cox regression models were used to assess association between retinal age gap and mortality risk. A restricted cubic spline analyses was conducted to investigate possible non-linear association between retinal age gap and mortality risk.

Findings The DL model achieved a strong correlation of 0·83 (P<0·001) between retinal age and chronological age, and an overall mean absolute error of 3·50 years. Cox regression models showed that each one-year increase in the retinal age gap was associated with a 2% increase in mortality risk (hazard ratio=1·02, 95% confidence interval:1·00-1·04, P=0·021). Restricted cubic spline analyses showed a non-linear relationship between retinal age gap and mortality (Pnon-linear=0·001). Higher retinal age gaps were associated with substantially increased risks of mortality, but only if the gap exceeded 3·71 years.

Interpretation Our findings indicate that retinal age gap is a robust biomarker of ageing that is closely related to risk of mortality.

Funding National Health and Medical Research Council Investigator Grant, Science and Technology Program of Guangzhou.

Evidence before this study Ageing at an individual level is heterogeneous. An accurate quantification of the biological ageing process is significant for risk stratification and delivery of tailored interventions. To date, cell-, molecular-, and imaging-based biomarkers have been developed, such as epigenetic clock, brain age and facial age. While the invasiveness of cellular and molecular ageing biomarkers, high cost and time-consuming nature of neuroimaging and facial ages, as well as ethical and privacy concerns of facial imaging, have limited their utilities. The retina is considered a window to the whole body, implying that the retina could provide clues for ageing.

Added value of this study We developed a deep learning (DL) model that can detect footprints of aging in fundus images and predict age with high accuracy for the UK population between 40 and 69 years old. Further, we have been the first to demonstrate that each one-year increase in retinal age gap (retinal age-chronological age) was significantly associated with a 2% increase in mortality risk. Evidence of a non-linear association between retinal age gap and mortality risk was observed. Higher retinal age gaps were associated with substantially increased risks of mortality, but only if the retinal age gap exceeded 3·71 years.

Implications of all the available evidence This is the first study to link the retinal age gap and mortality risk, implying that retinal age is a clinically significant biomarker of ageing. Our findings show the potential of retinal images as a screening tool for risk stratification and delivery of tailored interventions. Further, the capability to use fundus imaging in predicting ageing may improve the potential health benefits of eye disease screening, beyond the detection of sight-threatening eye diseases.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This present work was supported by the NHMRC Investigator Grant (APP1175405), Fundamental Research Funds of the State Key Laboratory of Ophthalmology, National Natural Science Foundation of China (82000901), Project of Investigation on Health Status of Employees in Financial Industry in Guangzhou, China (Z012014075), Science and Technology Program of Guangzhou, China (202002020049). Professor Mingguang He receives support from the University of Melbourne through its Research Accelerator Program and the CERA Foundation. The Centre for Eye Research Australia (CERA) receives Operational Infrastructure Support from the Victorian State Government.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The National Information Governance Board for Health and Social Care and the NHS North West Multicenter Research Ethics Committee approved the UK Biobank study in accordance with the principles of the Declaration of Helsinki (11/NW/0382), with all participants providing informed consent. The present analysis operates under UK Biobank application 62525.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted December 30, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Retinal Age as a Predictive Biomarker for Mortality Risk
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Retinal Age as a Predictive Biomarker for Mortality Risk
Zhuoting Zhu, Danli Shi, Guankai Peng, Zachary Tan, Xianwen Shang, Wenyi Hu, Huan Liao, Xueli Zhang, Yu Huang, Honghua Yu, Wei Meng, Wei Wang, Xiaohong Yang, Mingguang He
medRxiv 2020.12.24.20248817; doi: https://doi.org/10.1101/2020.12.24.20248817
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Retinal Age as a Predictive Biomarker for Mortality Risk
Zhuoting Zhu, Danli Shi, Guankai Peng, Zachary Tan, Xianwen Shang, Wenyi Hu, Huan Liao, Xueli Zhang, Yu Huang, Honghua Yu, Wei Meng, Wei Wang, Xiaohong Yang, Mingguang He
medRxiv 2020.12.24.20248817; doi: https://doi.org/10.1101/2020.12.24.20248817

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Ophthalmology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)