Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Structuring clinical text with AI: old vs. new natural language processing techniques evaluated on eight common cardiovascular diseases

View ORCID ProfileXianghao Zhan, View ORCID ProfileMarie Humbert-Droz, View ORCID ProfilePritam Mukherjee, View ORCID ProfileOlivier Gevaert
doi: https://doi.org/10.1101/2021.01.27.21250477
Xianghao Zhan
aDepartment of Bioengineering, Stanford University, Stanford, 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Xianghao Zhan
Marie Humbert-Droz
bCenter for Biomedical Informatics Research, Stanford University, Stanford, 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marie Humbert-Droz
Pritam Mukherjee
bCenter for Biomedical Informatics Research, Stanford University, Stanford, 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Pritam Mukherjee
Olivier Gevaert
bCenter for Biomedical Informatics Research, Stanford University, Stanford, 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Olivier Gevaert
  • For correspondence: ogevaert{at}stanford.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Article usage

Article usage: January 2021 to July 2025

AbstractFullPdf
Jan 2021193025
Feb 20214715101
Mar 20211071432
Apr 202198631
May 202175936
Jun 2021761131
Jul 2021341016
Aug 2021432328
Sep 2021441725
Oct 2021441840
Nov 2021552231
Dec 2021321714
Jan 2022252112
Feb 202222174
Mar 202234207
Apr 202237129
May 2022381211
Jun 202233177
Jul 202218114
Aug 202218123
Sep 2022301210
Oct 2022272313
Nov 2022213210
Dec 2022191716
Jan 20231066
Feb 202321811
Mar 202313156
Apr 2023201510
May 2023251614
Jun 202311257
Jul 202391011
Aug 2023172010
Sep 202311119
Oct 20231565
Nov 202326133
Dec 20231194
Jan 20241225
Feb 202431111
Mar 202410116
Apr 202410166
May 202418148
Jun 20241135
Jul 20241088
Aug 202411214
Sep 202410913
Oct 20242567
Nov 202416413
Dec 202413515
Jan 202513511
Feb 2025151916
Mar 2025193413
Apr 2025193630
May 2025163215
Jun 2025311620
Jul 20256106
Back to top
PreviousNext
Posted January 29, 2021.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Structuring clinical text with AI: old vs. new natural language processing techniques evaluated on eight common cardiovascular diseases
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Structuring clinical text with AI: old vs. new natural language processing techniques evaluated on eight common cardiovascular diseases
Xianghao Zhan, Marie Humbert-Droz, Pritam Mukherjee, Olivier Gevaert
medRxiv 2021.01.27.21250477; doi: https://doi.org/10.1101/2021.01.27.21250477
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Structuring clinical text with AI: old vs. new natural language processing techniques evaluated on eight common cardiovascular diseases
Xianghao Zhan, Marie Humbert-Droz, Pritam Mukherjee, Olivier Gevaert
medRxiv 2021.01.27.21250477; doi: https://doi.org/10.1101/2021.01.27.21250477

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)