Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Predicting the severity of disease progression in COVID-19 at the individual and population level: A mathematical model

View ORCID ProfileNarendra Chirmule, Pradip Nair, Bela Desai, Ravindra Khare, Vivek Nerurkar, Amitabh Gaur
doi: https://doi.org/10.1101/2021.04.01.21254804
Narendra Chirmule
1SymphonyTech Biologics, Philadelphia, Pennsylvania, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Narendra Chirmule
  • For correspondence: Narendra.Chirmule{at}symphonytech.com agaursd{at}gmail.com
Pradip Nair
2Biocon, Bangalore, Karnataka, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bela Desai
3NanoCellect Biomedical, Inc., San Diego, California, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ravindra Khare
1SymphonyTech Biologics, Philadelphia, Pennsylvania, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vivek Nerurkar
4Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amitabh Gaur
5Innovative Assay Solutions LLC, San Diego, California, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Narendra.Chirmule{at}symphonytech.com agaursd{at}gmail.com
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Article usage

Article usage: April 2021 to August 2025

AbstractFullPdf
Apr 2021112713257
May 20211632742
Jun 20211161331
Jul 2021582822
Aug 20211382927
Sep 2021642223
Oct 2021621820
Nov 202166528
Dec 202149712
Jan 202228158
Feb 2022281011
Mar 202228104
Apr 20223049
May 202231221
Jun 202224097
Jul 202249085
Aug 20222327
Sep 202232916
Oct 20223109
Nov 20222005
Dec 202220119
Jan 202319315
Feb 202317313
Mar 20232135
Apr 20231925
May 20231325
Jun 20231149
Jul 2023614
Aug 202317124
Sep 20231143
Oct 20231223
Nov 2023261513
Dec 2023803
Jan 20241016
Feb 20241733
Mar 2024824
Apr 202410610
May 2024526
Jun 20241278
Jul 2024913
Aug 202420610
Sep 20242547
Oct 2024826
Nov 202415210
Dec 20241014
Jan 20251217
Feb 202511295
Mar 202529299
Apr 20252545
May 202513118
Jun 2025201012
Jul 202517119
Aug 2025201
Back to top
PreviousNext
Posted April 07, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Predicting the severity of disease progression in COVID-19 at the individual and population level: A mathematical model
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Predicting the severity of disease progression in COVID-19 at the individual and population level: A mathematical model
Narendra Chirmule, Pradip Nair, Bela Desai, Ravindra Khare, Vivek Nerurkar, Amitabh Gaur
medRxiv 2021.04.01.21254804; doi: https://doi.org/10.1101/2021.04.01.21254804
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Predicting the severity of disease progression in COVID-19 at the individual and population level: A mathematical model
Narendra Chirmule, Pradip Nair, Bela Desai, Ravindra Khare, Vivek Nerurkar, Amitabh Gaur
medRxiv 2021.04.01.21254804; doi: https://doi.org/10.1101/2021.04.01.21254804

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)